REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (997 results)


Qu S, Chi SD, He ZM. The Development of Aspergillus flavus and Biosynthesis of Aflatoxin B1 are Regulated by the Golgi-Localized Mn(2+) Transporter Pmr1. Journal of agricultural and food chemistry 2024 38179648
Abstract:
Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.
O-GlcNAc proteins:
ATC1
Download
Zhang CC, Li Y, Jiang CY, Le QM, Liu X, Ma L, Wang FF. O-GlcNAcylation mediates H(2)O(2)-induced apoptosis through regulation of STAT3 and FOXO1. Acta pharmacologica Sinica 2024 38191912
Abstract:
The O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.
O-GlcNAc proteins:
STAT3, FOXO1
Species: Mus musculus
Download
Zhang J, Li C, Shuai W, Chen T, Gong Y, Hu H, Wei Y, Kong B, Huang H. maresin2 fine-tunes ULK1 O-GlcNAcylation to improve post myocardial infarction remodeling. European journal of pharmacology 2024 962 38056619
Abstract:
Myocardial infarction (MI) is one of the common causes of hospitalization and death all over the world. Maresin2 (MaR2), a specialized pro-solving mediator of inflammation, has been consolidated to be a novel cytokine fine-tuning inflammatory cascade. However, the precise mechanism is still unknown. Here, we demonstrated that maresin2 relieved myocardial damage via ULK1 O-GlcNAc modification during MI.
O-GlcNAc proteins:
ULK1
Species: Mus musculus
Download
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nature communications 2024 15(1) 38177117
Abstract:
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
O-GlcNAc proteins:
CUL5
Species: Mus musculus
Download