REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (20 results)


Kim YJ, Kang MJ, Kim E, Kweon TH, Park YS, Ji S, Yang WH, Yi EC, Cho JW. O-GlcNAc stabilizes SMAD4 by inhibiting GSK-3β-mediated proteasomal degradation. Scientific reports 2020 10(1) 33199824
Abstract:
O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification which occurs on the hydroxyl group of serine or threonine residues of nucleocytoplasmic proteins. It has been reported that the presence of this single sugar motif regulates various biological events by altering the fate of target proteins, such as their function, localization, and degradation. This study identified SMAD4 as a novel O-GlcNAc-modified protein. SMAD4 is a component of the SMAD transcriptional complex, a major regulator of the signaling pathway for the transforming growth factor-β (TGF-β). TGF-β is a powerful promoter of cancer EMT and metastasis. This study showed that the amount of SMAD4 proteins changes according to cellular O-GlcNAc levels in human lung cancer cells. This observation was made based on the prolonged half-life of SMAD4 proteins. The mechanism behind this interaction was that O-GlcNAc impeded interactions between SMAD4 and GSK-3β which promote proteasomal degradation of SMAD4. In addition, O-GlcNAc modification on SMAD4 Thr63 was responsible for stabilization. As a result, defects in O-GlcNAcylation on SMAD4 Thr63 attenuated the reporter activity of luciferase, the TGF-β-responsive SMAD binding element (SBE). This study's findings imply that cellular O-GlcNAc may regulate the TGF-β/SMAD signaling pathway by stabilizing SMAD4.
O-GlcNAc proteins:
SMAD4
Species: Homo sapiens
Download
Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, Jung J, Son S, Yi EC, Lee TH, Yang WH, Cho JW. Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell death & disease 2020 11(9) 32994395
Abstract:
O-GlcNAc transferase (OGT) is an enzyme that catalyzes the O-GlcNAc modification of nucleocytoplasmic proteins and is highly expressed in many types of cancer. However, the mechanism regulating its expression in cancer cells is not well understood. This study shows that OGT is a substrate of the E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) which plays an important role in cancer pathogenesis. Although LSD2 histone demethylase has already been reported as an E3 ubiquitin ligase in lung cancer cells, we identified XIAP as the main E3 ubiquitin ligase in colon cancer cells. Interestingly, OGT catalyzes the O-GlcNAc modification of XIAP at serine 406 and this modification is required for the E3 ubiquitin ligase activity of XIAP toward specifically OGT. Moreover, O-GlcNAcylation of XIAP suppresses colon cancer cell growth and invasion by promoting the proteasomal degradation of OGT. Therefore, our findings regarding the reciprocal regulation of OGT and XIAP provide a novel molecular mechanism for controlling cancer growth and invasion regulated by OGT and O-GlcNAc modification.
O-GlcNAc proteins:
XIAP
Species: Homo sapiens
Download
Seo J, Park YS, Kweon TH, Kang J, Son S, Kim HB, Seo YR, Kang MJ, Yi EC, Lee YH, Kim JH, Park B, Yang WH, Cho JW. O-Linked N-Acetylglucosamine Modification of Mitochondrial Antiviral Signaling Protein Regulates Antiviral Signaling by Modulating Its Activity. Frontiers in immunology 2020 11 33603735
Abstract:
Post-translational modifications, including O-GlcNAcylation, play fundamental roles in modulating cellular events, including transcription, signal transduction, and immune signaling. Several molecular targets of O-GlcNAcylation associated with pathogen-induced innate immune responses have been identified; however, the direct regulatory mechanisms linking O-GlcNAcylation with antiviral RIG-I-like receptor signaling are not fully understood. In this study, we found that cellular levels of O-GlcNAcylation decline in response to infection with Sendai virus. We identified a heavily O-GlcNAcylated serine-rich region between amino acids 249-257 of the mitochondrial antiviral signaling protein (MAVS); modification at this site disrupts MAVS aggregation and prevents MAVS-mediated activation and signaling. O-GlcNAcylation of the serine-rich region of MAVS also suppresses its interaction with TRAF3; this prevents IRF3 activation and production of interferon-β. Taken together, these results suggest that O-GlcNAcylation of MAVS may be a master regulatory event that promotes host defense against RNA viruses.
O-GlcNAc proteins:
MAVS
Species: Homo sapiens
Download
Kim HB, Seo HG, Son S, Choi H, Kim BG, Kweon TH, Kim S, Pai J, Shin I, Yang WH, Cho JW. O-GlcNAcylation of Mef2c regulates myoblast differentiation. Biochemical and biophysical research communications 2020 529(3) 32736694
Abstract:
Unlike other types of glycosylation, O-GlcNAcylation is a single glycosylation which occurs exclusively in the nucleus and cytosol. O-GlcNAcylation underlie metabolic diseases, including diabetes and obesity. Furthermore, O-GlcNAcylation affects different oncogenic processes such as osteoblast differentiation, adipogenesis and hematopoiesis. Emerging evidence suggests that skeletal muscle differentiation is also regulated by O-GlcNAcylation, but the detailed molecular mechanism has not been fully elucidated. In this study, we showed that hyper-O-GlcNAcylation reduced the expression of myogenin, a transcription factor critical for terminal muscle development, in C2C12 myoblasts differentiation by O-GlcNAcylation on Thr9 of myocyte-specific enhancer factor 2c. Furthermore, we showed that O-GlcNAcylation on Mef2c inhibited its DNA binding affinity to myogenin promoter. Taken together, we demonstrated that hyper-O-GlcNAcylation attenuates skeletal muscle differentiation by increased O-GlcNAcylation on Mef2c, which downregulates its DNA binding affinity.
O-GlcNAc proteins:
MEF2C
Species: Mus musculus
Download
Kim E, Kang JG, Kang MJ, Park JH, Kim YJ, Kweon TH, Lee HW, Jho EH, Lee YH, Kim SI, Yi EC, Park HW, Yang WH, Cho JW. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proceedings of the National Academy of Sciences of the United States of America 2020 117(25) 32513743
Abstract:
The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth. Aberrantly increased O-GlcNAcylation has recently emerged as a cause of hyperactivation of YAP in cancer cells. However, the mechanism, which induces hyperactivation of TAZ and blocks LATS-mediated negative feedback, remains to be elucidated in cancer cells. This study found that in breast cancer cells, abnormally increased O-GlcNAcylation hyperactivates YAP/TAZ and inhibits LATS2, a direct negative regulator of YAP/TAZ. LATS2 is one of the newly identified O-GlcNAcylated components in the MST-LATS kinase cascade. Here, we found that O-GlcNAcylation at LATS2 Thr436 interrupted its interaction with the MOB1 adaptor protein, which connects MST to LATS2, leading to activation of YAP/TAZ by suppressing LATS2 kinase activity. LATS2 is a core component in the LATS-mediated negative feedback loop. Thus, this study suggests that LATS2 O-GlcNAcylation is deeply involved in tumor growth by playing a critical role in dysregulation of the Hippo pathway in cancer cells.
O-GlcNAc proteins:
SLK, LATS2
Species: Homo sapiens
Download
Seo HG, Kim HB, Kang MJ, Ryum JH, Yi EC, Cho JW. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation. Scientific reports 2016 6 27713473
Abstract:
Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451-453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted. We also revealed that O-GlcNAcylation of Ser389, which resides in the tetratricopeptide repeats, plays an important role in the nuclear localisation of OGT. Our findings may explain how OGT, which possesses a NLS, exists in the nucleus and cytosol simultaneously.
O-GlcNAc proteins:
OGT1
Species: Homo sapiens
Download
Misra J, Kim DK, Jung YS, Kim HB, Kim YH, Yoo EK, Kim BG, Kim S, Lee IK, Harris RA, Kim JS, Lee CH, Cho JW, Choi HS. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis. Diabetes 2016 65(10) 27335230
Abstract:
Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis.
O-GlcNAc proteins:
ERR3
Species: Mus musculus
Download
Jang I, Kim HB, Seo H, Kim JY, Choi H, Yoo JS, Kim JW, Cho JW. O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response. Biochimica et biophysica acta 2015 1853(8) 25937070
Abstract:
O-GlcNAcylation is highly involved in cellular stress responses including the endoplasmic reticulum (ER) stress response. For example, glucosamine-induced flux through the hexosamine biosynthetic pathway can promote ER stress and ER stress inducers can change the total cellular level of O-GlcNAcylation. However, it is largely unknown which component(s) of the unfolded protein response (UPR) is directly regulated by O-GlcNAcylation. In this study, eukaryotic translation initiation factor 2α (eIF2α), a major branch of the UPR, was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241. Upon ER stress, eIF2α is phosphorylated at Ser 51 by phosphorylated PKR-like ER kinase and this inhibits global translation initiation, except for that of specific mRNAs, including activating transcription factor 4, that induce stress-responsive genes such as C/EBP homologous protein (CHOP). Hyper-O-GlcNAcylation induced by O-GlcNAcase inhibitor (thiamet-G) treatment or O-GlcNAc transferase (OGT) overexpression hindered phosphorylation of eIF2α at Ser 51. The level of O-GlcNAcylation of eIF2α was changed by dithiothreitol treatment dependent on its phosphorylation at Ser 51. Point mutation of the O-GlcNAcylation sites of eIF2α increased its phosphorylation at Ser 51 and CHOP expression and resulted in increased apoptosis upon ER stress. These results suggest that O-GlcNAcylation of eIF2α affects its phosphorylation at Ser 51 and influences CHOP-mediated cell death. This O-GlcNAcylation of eIF2α was reproduced in thiamet-G-injected mouse liver. In conclusion, proper regulation of O-GlcNAcylation and phosphorylation of eIF2α is important to maintain cellular homeostasis upon ER stress.
O-GlcNAc proteins:
IF2A
Species: Homo sapiens
Download
Cha MY, Cho HJ, Kim C, Jung YO, Kang MJ, Murray ME, Hong HS, Choi YJ, Choi H, Kim DK, Choi H, Kim J, Dickson DW, Song HK, Cho JW, Yi EC, Kim J, Jin SM, Mook-Jung I. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease. Human molecular genetics 2015 24(22) 26358770
Abstract:
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) is one of the protein glycosylations affecting various intracellular events. However, the role of O-GlcNAcylation in neurodegenerative diseases such as Alzheimer's disease (AD) is poorly understood. Mitochondrial adenosine 5'-triphosphate (ATP) synthase is a multiprotein complex that synthesizes ATP from ADP and Pi. Here, we found that ATP synthase subunit α (ATP5A) was O-GlcNAcylated at Thr432 and ATP5A O-GlcNAcylation was decreased in the brains of AD patients and transgenic mouse model, as well as Aβ-treated cells. Indeed, Aβ bound to ATP synthase directly and reduced the O-GlcNAcylation of ATP5A by inhibition of direct interaction between ATP5A and mitochondrial O-GlcNAc transferase, resulting in decreased ATP production and ATPase activity. Furthermore, treatment of O-GlcNAcase inhibitor rescued the Aβ-induced impairment in ATP production and ATPase activity. These results indicate that Aβ-mediated reduction of ATP synthase activity in AD pathology results from direct binding between Aβ and ATP synthase and inhibition of O-GlcNAcylation of Thr432 residue on ATP5A.
O-GlcNAc proteins:
ATPA, ATPA
Download
Kim HB, Lee SW, Mun CH, Yoon JY, Pai J, Shin I, Park YB, Lee SK, Cho JW. O-linked N-acetylglucosamine glycosylation of p65 aggravated the inflammation in both fibroblast-like synoviocytes stimulated by tumor necrosis factor-α and mice with collagen induced arthritis. Arthritis research & therapy 2015 17 26370562
Abstract:
We investigated the inflammatory potential of O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) of p65 in rheumatoid arthritis (RA).
O-GlcNAc proteins:
TF65
Species: Mus musculus
Download
Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, Jung ES, Kim Y, Baek JY, Kim KS, Cho JW, Mook-Jung I. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiology of aging 2013 34(1) 22503002
Abstract:
Deposition of β-amyloid (Aβ) as senile plaques and disrupted glucose metabolism are two main characteristics of Alzheimer's disease (AD). It is unknown, however, how these two processes are related in AD. Here we examined the relationship between O-GlcNAcylation, which is a glucose level-dependent post-translational modification that adds O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins, and Aβ production in a mouse model of AD carrying 5XFAD genes. We found that 1,2-dideoxy-2'-propyl-α-d-glucopyranoso-[2,1-D]-Δ2'-thiazoline (NButGT), a specific inhibitor of O-GlcNAcase, reduces Aβ production by lowering γ-secretase activity both in vitro and in vivo. We also found that O-GlcNAcylation takes place at the S708 residue of nicastrin, which is a component of γ-secretase. Moreover, NButGT attenuated the accumulation of Aβ, neuroinflammation, and memory impairment in the 5XFAD mice. This is the first study to show the relationship between Aβ generation and O-GlcNAcylation in vivo. These results suggest that O-GlcNAcylation may be a suitable therapeutic target for the treatment of AD.
O-GlcNAc proteins:
NICA
Species: Homo sapiens
Download
Ji S, Park SY, Roth J, Kim HS, Cho JW. O-GlcNAc modification of PPARγ reduces its transcriptional activity. Biochemical and biophysical research communications 2012 417(4) 22226965
Abstract:
The peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a key regulator of adipogenesis and is important for the homeostasis of the adipose tissue. The β-O-linked N-acetylglucosamine (O-GlcNAc) modification, a posttranslational modification on various nuclear and cytoplasmic proteins, is involved in the regulation of protein function. Here, we report that PPARγ is modified by O-GlcNAc in 3T3-L1 adipocytes. Mass spectrometric analysis and mutant studies revealed that the threonine 54 of the N-terminal AF-1 domain of PPARγ is the major O-GlcNAc site. Transcriptional activity of wild type PPARγ was decreased 30% by treatment with the specific O-GlcNAcase (OGA) inhibitor, but the T54A mutant of PPARγ did not respond to inhibitor treatment. In 3T3-L1 cells, an increase in O-GlcNAc modification by OGA inhibitor reduced PPARγ transcriptional activity and terminal adipocyte differentiation. Our results suggest that the O-GlcNAc state of PPARγ influences its transcriptional activity and is involved in adipocyte differentiation.
O-GlcNAc proteins:
PPARG
Species: Mus musculus
Download
Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW. A role for O-GlcNAcylation in setting circadian clock speed. Genes & development 2012 26(5) 22327476
Abstract:
Post-translational modifications of one or more central "clock" proteins, most notably time-of-day-dependent changes in phosphorylation, are critical for setting the pace of circadian (≅24 h) clocks. In animals, PERIOD (PER) proteins are the key state variable regulating circadian clock speed and undergo daily changes in abundance and cytoplasmic-nuclear distribution that are partly driven by a complex phosphorylation program. Here, we identify O-GlcNAcylation (O-GlcNAc) as a critical post-translational modification in circadian regulation that also contributes to setting clock speed. Knockdown or overexpression of Drosophila O-GlcNAc transferase (ogt) in clock cells either shortens or lengthens circadian behavioral rhythms, respectively. The Drosophila PERIOD protein (dPER) is a direct target of OGT and undergoes daily changes in O-GlcNAcylation, a modification that is mainly observed during the first half of the night, when dPER is predominantly located in the cytoplasm. Intriguingly, the timing of when dPER translocates from the cytoplasm to the nucleus is advanced or delayed in flies, wherein ogt expression is reduced or increased, respectively. Our results suggest that O-GlcNAcylation of dPER contributes to setting the correct pace of the clock by delaying the timing of dPER nuclear entry. In addition, OGT stabilizes dPER, suggesting that O-GlcNAcylation has multiple roles in circadian timing systems.
O-GlcNAc proteins:
PER
Download
Ji S, Kang JG, Park SY, Lee J, Oh YJ, Cho JW. O-GlcNAcylation of tubulin inhibits its polymerization. Amino acids 2011 40(3) 20665223
Abstract:
The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins is an abundant and reversible modification that involves many cellular processes including transcription, translation, cell proliferation, apoptosis, and signal transduction. Here, we found that the O-GlcNAc modification pattern was altered during all-trans retinoic acid (tRA)-induced neurite outgrowth in the MN9D neuronal cell line. We identified several O-GlcNAcylated proteins using mass spectrometric analysis, including α- and β-tubulin. Further analysis of α- and β-tubulin revealed that O-GlcNAcylated peptides mapped between residues 173 and 185 of α-tubulin and between residues 216 and 238 of β-tubulin, respectively. We found that an increase in α-tubulin O-GlcNAcylation reduced heterodimerization and that O-GlcNAcylated tubulin did not polymerize into microtubules. Consequently, when O-GlcNAcase inhibitors were co-incubated with tRA, the extent of neurite outgrowth was decreased by 20% compared to control. Thus, our data indicate that the O-GlcNAcylation of tubulin negatively regulates microtubule formation.
Species: Mus musculus
Download
Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG, Ota I, Shimada K, Konishi N, Nam HW, Hong SW, Yang WH, Roth J, Yook JI, Cho JW. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. The EMBO journal 2010 29(22) 20959806
Abstract:
Protein O-phosphorylation often occurs reciprocally with O-GlcNAc modification and represents a regulatory principle for proteins. O-phosphorylation of serine by glycogen synthase kinase-3β on Snail1, a transcriptional repressor of E-cadherin and a key regulator of the epithelial-mesenchymal transition (EMT) programme, results in its proteasomal degradation. We show that by suppressing O-phosphorylation-mediated degradation, O-GlcNAc at serine112 stabilizes Snail1 and thus increases its repressor function, which in turn attenuates E-cadherin mRNA expression. Hyperglycaemic condition enhances O-GlcNAc modification and initiates EMT by transcriptional suppression of E-cadherin through Snail1. Thus, dynamic reciprocal O-phosphorylation and O-GlcNAc modification of Snail1 constitute a molecular link between cellular glucose metabolism and the control of EMT.
O-GlcNAc proteins:
SNAI1
Species: Homo sapiens
Download
Yang WH, Park SY, Ji S, Kang JG, Kim JE, Song H, Mook-Jung I, Choe KM, Cho JW. O-GlcNAcylation regulates hyperglycemia-induced GPX1 activation. Biochemical and biophysical research communications 2010 391(1) 19944066
Abstract:
Hyperglycemia induces activation of glutathione peroxidase 1 (GPX1), an anti-oxidant enzyme essential for cell survival during oxidative stress. However, the mechanism of GPX1 activation is unclear. Here, we report that hyperglycemia-induced protein glycosylation by O-linked N-acetylglucosamine (O-GlcNAc) is crucial for activation of GPX1 and for its binding to c-Abl and Arg kinases. GPX1 itself is modified with O-GlcNAc on its C-terminus. We also demonstrate that pharmacological injection of the O-GlcNAcase inhibitor NTZ induces GPX1 activation in the mouse liver. Our findings suggest a crucial role for GPX1 and its O-GlcNAc modification in hyperglycemia and diabetes mellitus.
O-GlcNAc proteins:
GPX1, GPX1
Download
Kang JG, Park SY, Ji S, Jang I, Park S, Kim HS, Kim SM, Yook JI, Park YI, Roth J, Cho JW. O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation. The Journal of biological chemistry 2009 284(50) 19833729
Abstract:
When cellular glucose concentrations fall below normal levels, in general the extent of protein O-GlcNAc modification (O-GlcNAcylation) decreases. However, recent reports demonstrated increased O-GlcNAcylation by glucose deprivation in HepG2 and Neuro-2a cells. Here, we report increased O-GlcNAcylation in non-small cell lung carcinoma A549 cells and various other cells in response to glucose deprivation. Although the level of O-GlcNAc transferase was unchanged, the enzyme contained less O-GlcNAc, and its activity was increased. Moreover, O-GlcNAcase activity was reduced. The studied cells contain glycogen, and we show that its degradation in response to glucose deprivation provides a source for UDP-GlcNAc required for increased O-GlcNAcylation under this condition. This required active glycogen phosphorylase and resulted in increased glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting enzyme in the hexosamine biosynthetic pathway. Interestingly, glucose deprivation reduced the amount of phosphofructokinase 1, a regulatory glycolytic enzyme, and blocked ATP synthesis. These findings suggest that glycogen is the source for increased O-GlcNAcylation but not for generating ATP in response to glucose deprivation and that this may be useful for cancer cells to survive.
O-GlcNAc proteins:
OGT1
Species: Homo sapiens
Download
Yang WH, Park SY, Nam HW, Kim DH, Kang JG, Kang ES, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proceedings of the National Academy of Sciences of the United States of America 2008 105(45) 18988733
Abstract:
The transcription factor NFkappaB is activated by phosphorylation and acetylation and plays important roles in inflammatory and immune responses in the cell. Additionally, posttranslational modification of the NFkappaB p65 subunit by O-linked N-acetylglucosamine (O-GlcNAc) has been reported, but the modification site of O-GlcNAc on NFkappaB p65 and its exact function have not been elucidated. In this work, we show that O-GlcNAcylation of NFkappaB p65 decreases binding to IkappaB alpha and increases transcriptional activity under hyperglycemic conditions. Also, we demonstrate that both Thr-322 and Thr-352 of NFkappaB p65 can be modified with O-GlcNAc, but modification on Thr-352, not Thr-322, is important for transcriptional activation. Our findings suggest that site-specific O-GlcNAcylation may be a reason why NFkappaB activity increases continuously under hyperglycemic conditions.
O-GlcNAc proteins:
TF65
Species: Homo sapiens
Download
Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature cell biology 2006 8(10) 16964247
Abstract:
Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to p53 is known to occur, but the site of O-GlcNAcylation and its effects on p53 are not understood. Here, we show that Ser 149 of p53 is O-GlcNAcylated and that this modification is associated with decreased phosphorylation of p53 at Thr 155, which is a site that is targeted by the COP9 signalosome, resulting in decreased p53 ubiquitination. Accordingly, O-GlcNAcylation at Ser 149 stabilizes p53 by blocking ubiquitin-dependent proteolysis. Our results indicate that the dynamic interplay between O-GlcNAc and O-phosphate modifications coordinately regulate p53 stability and activity.
O-GlcNAc proteins:
P53
Species: Homo sapiens
Download
Kim HS, Kim EM, Lee J, Yang WH, Park TY, Kim YM, Cho JW. Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions. FEBS letters 2006 580(9) 16579988
Abstract:
The objective of this study was to identify proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) in pancreatic beta-cells and to understand their roles in cell death under hyperglycemic conditions. Here we report that heat shock protein 60 (HSP60) is modified with O-GlcNAc. Levels of O-GlcNAcylated HSP60 increased twofold in response to hyperglycemic conditions. HSP60 is a chaperonin known to bind to Bax in the cytoplasm under normoglycemic conditions. Under hyperglycemic conditions, Bax detached from O-GlcNAcylated HSP60 and translocated to mitochondria. Hyperglycemic conditions were also associated with cytochrome c release, caspase-3 activation, and cell death, suggesting that elevated O-GlcNAcylation of HSP60 interferes with HSP60-Bax interactions, leading to pancreatic beta-cell death.
O-GlcNAc proteins:
CH60
Download
Page 1 of 1