REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (12 results)


Wang J, Cao W, Zhang W, Dou B, Zeng X, Su S, Cao H, Ding X, Ma J, Li X. Ac(3)4FGlcNAz is an effective metabolic chemical reporter for O-GlcNAcylated proteins with decreased S-glyco-modification. Bioorganic chemistry 2023 131 36610251
Abstract:
O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.
O-GlcNAc proteins:
1433F
Species: Mus musculus
Download
Mishra S, Ma J, McKoy D, Sasaki M, Farinelli F, Page RC, Ranek MJ, Zachara N, Kass DA. Transient receptor potential canonical type 6 (TRPC6) O-GlcNAcylation at Threonine-221 plays potent role in channel regulation. iScience 2023 26(3) 36936781
Abstract:
Transient receptor potential canonical type 6 (TRPC6) is a non-voltage-gated channel that principally conducts calcium. Elevated channel activation contributes to fibrosis, hypertrophy, and proteinuria, often coupled to stimulation of nuclear factor of activated T-cells (NFAT). TRPC6 is post-translationally regulated, but a role for O-linked β-N-acetyl glucosamine (O-GlcNAcylation) as elevated by diabetes, is unknown. Here we show TRPC6 is constitutively O-GlcNAcylated at Ser14, Thr70, and Thr221 in the N-terminus ankryn-4 (AR4) and linker (LH1) domains. Mutagenesis to alanine reveals T221 as a critical controller of resting TRPC6 conductance, and associated NFAT activity and pro-hypertrophic signaling. T→A mutations at sites homologous in closely related TRPC3 and TRPC7 also increases their activity. Molecular modeling predicts interactions between Thr221-O-GlcNAc and Ser199, Glu200, and Glu246, and combined alanine substitutions of the latter similarly elevates resting NFAT activity. Thus, O-GlcNAcylated T221 and interactions with coordinating residues is required for normal TRPC6 channel conductance and NFAT activation.
O-GlcNAc proteins:
TRPC6
Species: Homo sapiens
Download
Cui Z, He J, Zhu J, Ni W, Liu L, Bian Z, Mao S, Gu S, Shan Y, Chu Z, Wu Q, Lu J, Liu Y, Sun F, Pan Q, Zhang Y, Huang N, Ma J. O-GlcNAcylated LARP1 positively regulated by circCLNS1A facilitates hepatoblastoma progression through DKK4/β-catenin signalling. Clinical and translational medicine 2023 13(4) 37070251
Abstract:
Accumulating studies have shown that La-related protein 1 (LARP1) is involved in the occurrence and development of various tumours. However, the expression pattern and biological role of LARP1 in hepatoblastoma (HB) remain unclear so far.
O-GlcNAc proteins:
LARP1
Species: Homo sapiens
Download
Wu C, Shi S, Hou C, Luo Y, Byers S, Ma J. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS applied materials & interfaces 2022 14(42) 36240223
Abstract:
As an essential modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modulates the functions of many proteins. However, site-specific characterization of O-GlcNAcylated proteins remains challenging. Herein, an innovative material grafted with nitro-oxide (N→O) groups was designed for high affinity enrichment for O-GlcNAc peptides from native proteins. By testing with synthetic O-GlcNAc peptides and standard proteins, the synthesized material exhibited high affinity and selectivity. Based on the material prepared, we developed a workflow for site-specific analysis of O-GlcNAcylated proteins in complex samples. We performed O-GlcNAc proteomics with the PANC-1 cell line, a representative model for pancreatic ductal adenocarcinoma. In total 364 O-GlcNAc peptides from 267 proteins were identified from PANC-1 cells. Among them, 183 proteins were newly found to be O-GlcNAcylated in humans (with 197 O-GlcNAc sites newly reported). The materials and methods can be facilely applied for site-specific O-GlcNAc proteomics in other complex samples.
Species: Homo sapiens
Download
Wang J, Dou B, Zheng L, Cao W, Zeng X, Wen Y, Ma J, Li X. Synthesis of Na(2)S(2)O(4) mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition. Bioorganic & medicinal chemistry letters 2021 48 34229054
Abstract:
A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.
O-GlcNAc proteins:
PGP, EIFCL, KIF2A, PDLI1, BACH, DFFA, CLIC1, EIF3F, IF2B3, RTCA, PSDE, PPP6, RPC1, PSA7, HNRDL, SC16A, RPAC1, NKRF, EIF3H, PAPS1, SNUT1, ARK72, MYO1B, IDH3B, SAHH2, PLIN3, IMA7, UGDH, CTND1, SNX2, BRD4, WDR1, TBCA, FLNB, PR40A, MPPB, NDUS3, ECI2, CSDE1, U520, WDHD1, EIF3G, PSD10, IDHC, GLRX3, RL1D1, CIAO1, PLPHP, ERLN2, GLSK, SC31A, UBR5, ELP1, VAPB, 6PGL, AGM1, AHSA1, PSMG1, SGPL1, AP2A1, STAU1, TTC4, BPNT1, MBD3, TOM40, ACL6A, GSHR, PNPH, CYTB, KITH, P53, TPM3, PROF1, FUMH, ODPA, CY1, SRP19, DLDH, RU2A, UCHL1, ALDOC, THIO, KAP0, ESTD, ODPB, PYGB, ACADM, G6PD, ADHX, CDK4, HARS1, PEPD, P4HA1, ETFA, MIF, AK1A1, CCNB1, GLNA, DESP, FER, UBF1, PRS6A, RL35A, NELFE, RCC1, E2AK2, SPEE, ANXA7, RAB6A, PSB1, IMDH1, GSTM3, VATB2, FLNA, ACOHC, SDHB, PIMT, FBRL, NDKB, ADRO, TCEA1, TBG1, MAOM, IF4B, THTM, RS12, BRD2, DNJB1, PSA1, PSA2, PSA4, STOM, PYR1, PSB4, PSB6, NDUS1, DPOD1, AMPL, ERP29, PRDX3, ECHM, PEBP1, PDIA3, HMOX2, PURA2, PUR8, AL1B1, RPB2, GDIA, TIA1, QCR1, HNRH3, STIP1, PRDX2, P5CR1, DUT, PROF2, SPB6, RADI, T2FA, MYH9, MYH10, FUS, PRS7, MP2K2, HEM6, GNL1, ODO2, SRP14, TALDO, ETFB, VATA, IF4A3, TXLNA, BUD31, CSK, THIM, LIS1, NAMPT, PRS6B, RECQ1, NOP2, CRKL, NSF, CAPZB, COPD, IDHP, AL9A1, RL34, FAS, SYCC, PSB3, IDH3A, SERPH, ANX11, FXR1, FXR2, SMCA4, GALK1, ROA3, HNRPM, IMA5, GDIR1, HNRPF, KIF11, THOP1, CAZA1, BIEA, MAP11, SUCA, SC24C, DRG2, ECHB, DSRAD, HNRH2, IF6, CORO7, ARPC4, CD81, SC61B, MYL6, PSA6, CDC42, SRP54, UB2D3, UBC12, ARP3, RL37A, COPZ1, NTF2, 1433G, PP1A, PP1B, SMD2, PRS10, ERF1, CNBP, H4, RAP1A, RS30, GBB1, GBB2, TRA2B, 2ABA, DYL1, RL38, PP2AA, TBA1B, GSTO1, DCD, RT05, RT09, RL36A, H33, VIGLN, FKBP3, DHSO, EXOSX, ODO1, MMSA, TF65, LGUL, 1433F, CSTF1, SRS11, EF1A2, PTN11, PUR1, GFPT1, C1QBP, BAX, SRSF4, RBBP4, ASPH, GRSF1, AIMP1, ILF3, CSN1, RED, MTAP, TADBP, ROA0, STX5, SRSF9, SRSF5, IFIT5, EIF3I, DC1I2, PICAL, ULA1, SNW1, FHL1, BOP1, UBP2L, DYHC1, EI2BA, TRI25, FLNC, GNA13, CAPR1, KPRA, UBP10, CHD4, NUMA1, GAPD1, EMC2, SEPT2, IF4H, IPYR, CNN3, SC23B, SF01, TRIP6, MARE1, ELAV1, TOM34, VAMP3, ADRM1, PKN2, CSRP2, DPYL2, RBBP7, H2B2E, PCKGM, TRXR1, TIM50, FA98B, ZN326, PREP, RRP12, SYAM, EXOS6, CAF17, UBR4, NT5D1, PDE12, JMJD6, CDC73, EDC4, PRP8, RL22L, SYDM, GGYF2, HSDL2, TM10C, ZCCHV, DHX29, DCXR, HUWE1, ACOT1, KTN1, CARM1, STX12, HORN, SPB1, SRRM1, SUV3, TXND5, SCPDL, FA98A, PCAT1, FAD1, UBA3, NEK9, BRX1, ZC3HF, SCFD1, HNRLL, ATX2L, PSPC1, P66B, DNJC9, DDX1, H1X, PSMF1, RT27, LAR4B, ARC1A, RENT1, FUBP1, P5CR2, TRM61, ZCCHL, PGAM5, FUBP3, SPF45, THOC3, ZFR, SNX27, RBM14, PRPK, TBCB, CDC5L, PARK7, HCD2, ROAA, EBP2, VRK1, NIPS1, MEP50, TBA1C, ERP44, NTPCR, DDX23, MTNA, NTM1A, TM109, SYTM, THIC, RBM4, HDHD5, ITPA, EIF2A, PDIP3, MK67I, GTPB4, REN3B, API5, UBE2O, WDR12, SLIRP, NAA50, ILKAP, SLK, PININ, YTDC2, RPF2, QTRT2, ARMT1, CSN7B, ELP3, KT3K, MRM3, GLOD4, MCCB, CWC22, WDR6, VTA1, EXOS4, INO1, LUC7L, TIGAR, XPP1, SIAS, PHP14, HELLS, ECHD1, RBM12, DD19A, SEP11, TBC13, ATD3A, DDX18, PNPO, RBM28, LYAR, DPP3, BCLF1, F120A, HPBP1, MAT2B, RRBP1, GMPR2, GRHPR, TES, CHRD1, SEPT9, EI2BD, DBNL, DDX41, APC7, STML2, MRT4, ACINU, NUP50, PSME2, MYO6, CHIP, CSN3, SRRM2, CD11A, SMC3, RTRAF, PIN4, PLAP, NUDC, COF2, AP3M1, TR150, NOP58, SGT1, SYYM, SBDS, EXOS1, SF3B6, RRP15, RT23, STRAP, CHTOP, SAMH1, TLN1, HYOU1, ATG4B, TBL2, PRC2C, PPME1, YTHD2, SNX9, SERC, CLIC4, DC1L1, S23IP
Species: Homo sapiens
Download
Zhang J, Yu P, Hua F, Hu Y, Xiao F, Liu Q, Huang D, Deng F, Wei G, Deng W, Ma J, Zhu W, Zhang J, Yu S. Sevoflurane postconditioning reduces myocardial ischemia reperfusion injury-induced necroptosis by up-regulation of OGT-mediated O-GlcNAcylated RIPK3. Aging 2020 12(24) 33231560
Abstract:
Inhalation anesthetics have been demonstrated to have protective effects against myocardial ischemia reperfusion injury (MIRI). O-linked GlcNAcylation (O-GlcNAc) modifications have been shown to protect against MIRI. This study aimed to investigate whether O-GlcNAcylation and necroptosis signaling were important for sevoflurane postconditioning (SPC) induced cardioprotective effects. Apart from rats in the SHAM and sevoflurane (SEVO) group, rats underwent 30 min ischemia followed by 2 h reperfusion. Cardiac hemodynamics and function were determined. In addition, myocardial infarction size, cardiac function parameters, myocardial lactic dehydrogenase (LDH) content, myocardium histopathological changes, necrotic myocardium, O-GlcNAcylation, and protein expression levels of necroptosis biomarkers were measured, together with co-immunoprecipitation experiments using proteins associated with the necroptosis pathway and O-GlcNAcylation. SPC reduced myocardial infarction size, ameliorated cardiac function, restored hemodynamic performance, improved histopathological changes, and reduced receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) mediated necroptosis. In addition, SPC up-regulated O-GlcNAc transferase (OGT) mediated O-GlcNAcylation, increased O-GlcNAcylated RIPK3, and inhibited the association of RIPK3 and MLKL. However, OSMI-1, an OGT inhibitor, abolished SPC mediated cardioprotective effects and inhibited OGT mediated up-regulation of O-GlcNAcylation and down-regulation of RIPK3 and MLKL proteins induced by SPC. Our study demonstrated that SPC restrained MIRI induced necroptosis via regulating OGT mediated O-GlcNAcylation of RIPK3 and lessening the formulation of RIPK3/MLKL complex.
O-GlcNAc proteins:
RIPK3
Download
Hardivillé S, Banerjee PS, Selen Alpergin ES, Smith DM, Han G, Ma J, Talbot CC Jr, Hu P, Wolfgang MJ, Hart GW. TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. Molecular cell 2020 77(5) 31866147
Abstract:
In eukaryotes, gene expression is performed by three RNA polymerases that are targeted to promoters by molecular complexes. A unique common factor, the TATA-box binding protein (TBP), is thought to serve as a platform to assemble pre-initiation complexes competent for transcription. Here, we describe a novel molecular mechanism of nutrient regulation of gene transcription by dynamic O-GlcNAcylation of TBP. We show that O-GlcNAcylation at T114 of TBP blocks its interaction with BTAF1, hence the formation of the B-TFIID complex, and its dynamic cycling on and off of DNA. Transcriptomic and metabolomic analyses of TBPT114A CRISPR/Cas9-edited cells showed that loss of O-GlcNAcylation at T114 increases TBP binding to BTAF1 and directly impacts expression of 408 genes. Lack of O-GlcNAcylation at T114 is associated with a striking reprogramming of cellular metabolism induced by a profound modification of the transcriptome, leading to gross alterations in lipid storage.
O-GlcNAc proteins:
TBP
Species: Homo sapiens
Download
Ma J, Wang WH, Li Z, Shabanowitz J, Hunt DF, Hart GW. O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry. Analytical chemistry 2019 91(4) 30657688
Abstract:
As a dynamic post-translational modification, O-linked β- N-acetylglucosamine ( O-GlcNAc) modification (i.e., O-GlcNAcylation) of proteins regulates many biological processes involving cellular metabolism and signaling. However, O-GlcNAc site mapping, a prerequisite for site-specific functional characterization, has been a challenge since its discovery. Herein we present a novel method for O-GlcNAc enrichment and site mapping. In this method, the O-GlcNAc moiety on peptides was labeled with UDP-GalNAz followed by copper-free azide-alkyne cycloaddition with a multifunctional reagent bearing a terminal cyclooctyne, a disulfide bridge, and a biotin handle. The tagged peptides were then released from NeutrAvidin beads upon reductant treatment, alkylated with (3-acrylamidopropyl)trimethylammonium chloride, and subjected to electron-transfer dissociation mass spectrometry analysis. After validation by using standard synthetic peptide gCTD and model protein α-crystallin, such an approach was applied to the site mapping of overexpressed TGF-β-activated kinase 1/MAP3K7 binding protein 2 (TAB2), with four O-GlcNAc sites unambiguously identified. Our method provides a promising tool for the site-specific characterization of O-GlcNAcylation of important proteins.
O-GlcNAc proteins:
TAB2
Species: Homo sapiens
Download
Song H, Ma J, Bian Z, Chen S, Zhu J, Wang J, Huang N, Yin M, Sun F, Xu M, Pan Q. Global profiling of O-GlcNAcylated and/or phosphorylated proteins in hepatoblastoma. Signal transduction and targeted therapy 2019 4 31637018
Abstract:
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) and phosphorylation are critical posttranslational modifications that are involved in regulating the functions of proteins involved in tumorigenesis and the development of various solid tumors. However, a detailed characterization of the patterns of these modifications at the peptide or protein level in hepatoblastoma (HB), a highly malignant primary hepatic tumor with an extremely low incidence in children, has not been performed. Here, we examined O-GlcNAc-modified or phospho-modified peptides and proteins in HB through quantitative proteomic analysis of HB tissues and paired normal liver tissues. Our results identified 114 O-GlcNAcylated peptides belonging to 78 proteins and 3494 phosphorylated peptides in 2088 proteins. Interestingly, 41 proteins were modified by both O-GlcNAcylation and phosphorylation. These proteins are involved in multiple molecular and cellular processes, including chromatin remodeling, transcription, translation, transportation, and organelle organization. In addition, we verified the accuracy of the proteomics results and found a competitive inhibitory effect between O-GlcNAcylation and phosphorylation of HSPB1. Further, O-GlcNAcylation modification of HSPB1 promoted proliferation and enhanced the chemotherapeutic resistance of HB cell lines in vitro. Collectively, our research suggests that O-GlcNAc-modified and/or phospho-modified proteins may play a crucial role in the pathogenesis of HB.