REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Ogawa M, Senoo Y, Ikeda K, Takeuchi H, Okajima T. Structural Divergence in O-GlcNAc Glycans Displayed on Epidermal Growth Factor-like Repeats of Mammalian Notch1. Molecules (Basel, Switzerland) 2018 23(7) 30018219
Abstract:
Extracellular O-GlcNAc is a novel class of modification catalyzed by epidermal growth factor-like (EGF)-domain specific O-GlcNAc transferase (EOGT). In mammals, EOGT is required for ligand-mediated Notch signaling for vascular development. Previous studies have revealed that O-GlcNAc in mammalian cultured cells is subject to subsequent glycosylation, which may impose additional layers of regulation. This study aimed to analyze the O-GlcNAc glycans of Drosophila EGF20 as model substrates and mouse Notch1 EGF repeats by mass-spectrometry. The analysis of Drosophila EGF20 expressed in HEK293T cells revealed that the majority of the proteins are modified with an elongated form of O-GlcNAc glycan comprising terminal galactose or sialic acid residues. In contrast, recombinant Notch1 EGF repeats isolated from HEK293T cells revealed structural divergence of O-GlcNAc glycans among the different EGF domains. Although the majority of Notch1 EGF2 and EGF20 domains contained the extended forms of the glycan, the O-GlcNAc in many other domains mostly existed as a monosaccharide irrespective of the exogenous EOGT expression. Our results raised a hypothesis that an array of O-GlcNAc monosaccharides may impact the structure and function of Notch receptors.
O-GlcNAc proteins:
NOTCH
Download
Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, Murohara T, Kato K, Sundaram S, Stanley P, Okajima T. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. eLife 2017 6 28395734
Abstract:
The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt-/- retina, and Notch target gene expression was decreased in Eogt-/-endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.
O-GlcNAc proteins:
NOTC1
Species: Mus musculus
Download
Ogawa M, Sakakibara Y, Kamemura K. Requirement of decreased O-GlcNAc glycosylation of Mef2D for its recruitment to the myogenin promoter. Biochemical and biophysical research communications 2013 433(4) 23523791
Abstract:
Previously, we demonstrated that the expression of myogenin, a critical transcription factor for myogenesis, is negatively regulated by O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation in mouse C2C12 cells. In this study, we found that Mef2 family proteins, especially Mef2D which is a crucial transcriptional activator of myogenin, are O-GlcNAc glycosylated. Between the two splice variants of Mef2D, Mef2D1a rather than Mef2D1b appears to drive the initiation of myogenin expression in the early stage of myogenesis. A deletion mutant analysis showed that Mef2D1a is glycosylated both in its DNA-binding and transactivation domains. A significant decrease in the glycosylation of Mef2D was observed in response to myogenic stimulus in C2C12 cells. Inhibition of the myogenesis-dependent decrease in the glycosylation of Mef2D suppressed its recruitment to the myogenin promoter. These results indicate that the expression of myogenin is regulated, at least in part, by the decreased glycosylation-dependent recruitment of Mef2D to the promoter region, and this is one of the negative regulatory mechanisms of skeletal myogenesis by O-GlcNAc glycosylation.
O-GlcNAc proteins:
MEF2D
Species: Mus musculus
Download
Page 1 of 1