REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Machacek M, Saunders H, Zhang Z, Tan EP, Li J, Li T, Villar MT, Artigues A, Lydic T, Cork G, Slawson C, Fields PE. Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment. The Journal of biological chemistry 2019 294(22) 31010828
Abstract:
Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.
O-GlcNAc proteins:
ACACA
Species: Mus musculus
Download
Tan EP, McGreal SR, Graw S, Tessman R, Koppel SJ, Dhakal P, Zhang Z, Machacek M, Zachara NE, Koestler DC, Peterson KR, Thyfault JP, Swerdlow RH, Krishnamurthy P, DiTacchio L, Apte U, Slawson C. Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. The Journal of biological chemistry 2017 292(36) 28739801
Abstract:
Dysfunctional mitochondria and generation of reactive oxygen species (ROS) promote chronic diseases, which have spurred interest in the molecular mechanisms underlying these conditions. Previously, we have demonstrated that disruption of post-translational modification of proteins with β-linked N-acetylglucosamine (O-GlcNAcylation) via overexpression of the O-GlcNAc-regulating enzymes O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) impairs mitochondrial function. Here, we report that sustained alterations in O-GlcNAcylation either by pharmacological or genetic manipulation also alter metabolic function. Sustained O-GlcNAc elevation in SH-SY5Y neuroblastoma cells increased OGA expression and reduced cellular respiration and ROS generation. Cells with elevated O-GlcNAc levels had elongated mitochondria and increased mitochondrial membrane potential, and RNA-sequencing analysis indicated transcriptome reprogramming and down-regulation of the NRF2-mediated antioxidant response. Sustained O-GlcNAcylation in mouse brain and liver validated the metabolic phenotypes observed in the cells, and OGT knockdown in the liver elevated ROS levels, impaired respiration, and increased the NRF2 antioxidant response. Moreover, elevated O-GlcNAc levels promoted weight loss and lowered respiration in mice and skewed the mice toward carbohydrate-dependent metabolism as determined by indirect calorimetry. In summary, sustained elevation in O-GlcNAcylation coupled with increased OGA expression reprograms energy metabolism, a finding that has potential implications for the etiology, development, and management of metabolic diseases.
O-GlcNAc proteins:
NF2L2
Species: Homo sapiens
Download
Zhang Z, Costa FC, Tan EP, Bushue N, DiTacchio L, Costello CE, McComb ME, Whelan SA, Peterson KR, Slawson C. O-Linked N-Acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Interact with Mi2β Protein at the Aγ-Globin Promoter. The Journal of biological chemistry 2016 291(30) 27231347
Abstract:
One mode of γ-globin gene silencing involves a GATA-1·FOG-1·Mi2β repressor complex that binds to the -566 GATA site relative to the (A)γ-globin gene cap site. However, the mechanism of how this repressor complex is assembled at the -566 GATA site is unknown. In this study, we demonstrate that the O-linked N-acetylglucosamine (O-GlcNAc) processing enzymes, O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA), interact with the (A)γ-globin promoter at the -566 GATA repressor site; however, mutation of the GATA site to GAGA significantly reduces OGT and OGA promoter interactions in β-globin locus yeast artificial chromosome (β-YAC) bone marrow cells. When WT β-YAC bone marrow cells are treated with the OGA inhibitor Thiamet-G, the occupancy of OGT, OGA, and Mi2β at the (A)γ-globin promoter is increased. In addition, OGT and Mi2β recruitment is increased at the (A)γ-globin promoter when γ-globin becomes repressed in postconception day E18 human β-YAC transgenic mouse fetal liver. Furthermore, we show that Mi2β is modified with O-GlcNAc, and both OGT and OGA interact with Mi2β, GATA-1, and FOG-1. Taken together, our data suggest that O-GlcNAcylation is a novel mechanism of γ-globin gene regulation mediated by modulating the assembly of the GATA-1·FOG-1·Mi2β repressor complex at the -566 GATA motif within the promoter.
O-GlcNAc proteins:
CHD4
Species: Homo sapiens
Download
Page 1 of 1