REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (18 results)


Meek RW, Blaza JN, Busmann JA, Alteen MG, Vocadlo DJ, Davies GJ. Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT. Nature communications 2021 12(1) 34764280
Abstract:
The O-linked β-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.
O-GlcNAc proteins:
TAB1
Species: Homo sapiens
Download
Zhu Y, Willems LI, Salas D, Cecioni S, Wu WB, Foster LJ, Vocadlo DJ. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. Journal of the American Chemical Society 2020 142(37) 32870666
Abstract:
Hundreds of nuclear, cytoplasmic, and mitochondrial proteins within multicellular eukaryotes have hydroxyl groups of specific serine and threonine residues modified by the monosaccharide N-acetylglucosamine (GlcNAc). This modification, known as O-GlcNAc, has emerged as a central regulator of both cell physiology and human health. A key emerging function of O-GlcNAc appears to be to regulate cellular protein homeostasis. We previously showed, using overexpressed model proteins, that O-GlcNAc modification can occur cotranslationally and that this process prevents premature degradation of such nascent polypeptide chains. Here, we use tandem metabolic engineering strategies to label endogenously occurring nascent polypeptide chains within cells using O-propargyl-puromycin (OPP) and target the specific subset of nascent chains that are cotranslationally glycosylated with O-GlcNAc by metabolic saccharide engineering using tetra-O-acetyl-2-N-azidoacetyl-2-deoxy-d-galactopyranose (Ac4GalNAz). Using various combinations of sequential chemoselective ligation strategies, we go on to tag these analytes with a series of labels, allowing us to define conditions that enable their robust labeling. Two-step enrichment of these glycosylated nascent chains, combined with shotgun proteomics, allows us to identify a set of endogenous cotranslationally O-GlcNAc modified proteins. Using alternative targeted methods, we examine three of these identified proteins and further validate their cotranslational O-GlcNAcylation. These findings detail strategies to enable isolation and identification of extremely low abundance endogenous analytes present within complex protein mixtures. Moreover, this work opens the way to studies directed at understanding the roles of O-GlcNAc and other cotranslational protein modifications and should stimulate an improved understanding of the role of O-GlcNAc in cytoplasmic protein quality control and proteostasis.
Species: Homo sapiens
Download
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan HY, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High-Throughput Screening: Application to O-GlcNAc Transferase. Angewandte Chemie (International ed. in English) 2020 59(24) 32092778
Abstract:
Glycosyltransferases carry out important cellular functions in species ranging from bacteria to humans. Despite their essential roles in biology, simple and robust activity assays that can be easily applied to high-throughput screening for inhibitors of these enzymes have been challenging to develop. Herein, we report a bead-based strategy to measure the group-transfer activity of glycosyltransferases sensitively using simple fluorescence measurements, without the need for coupled enzymes or secondary reactions. We validate the performance and accuracy of the assay using O-GlcNAc transferase (OGT) as a model system through detailed Michaelis-Menten kinetic analysis of various substrates and inhibitors. Optimization of this assay and application to high-throughput screening enabled screening for inhibitors of OGT, leading to a novel inhibitory scaffold. We believe this assay will prove valuable not only for the study of OGT, but also more widely as a general approach for the screening of glycosyltransferases and other group-transfer enzymes.
O-GlcNAc proteins:
HCFC1, CSK21, TAB1
Species: Homo sapiens
Download
Wong KKL, Liu TW, Parker JM, Sinclair DAR, Chen YY, Khoo KH, Vocadlo DJ, Verheyen EM. The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 2020 117(4) 31932432
Abstract:
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
O-GlcNAc proteins:
HIPK2
Species: Homo sapiens
Download
Escobar EE, King DT, Serrano-Negrón JE, Alteen MG, Vocadlo DJ, Brodbelt JS. Precision Mapping of O-Linked N-Acetylglucosamine Sites in Proteins Using Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Chemical Society 2020 142(26) 32510947
Abstract:
Despite its central importance as a regulator of cellular physiology, identification and precise mapping of O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (PTM) sites in proteins by mass spectrometry (MS) remains a considerable technical challenge. This is due in part to cleavage of the glycosidic bond occurring prior to the peptide backbone during collisionally activated dissociation (CAD), which leads to generation of characteristic oxocarbenium ions and impairs glycosite localization. Herein, we leverage CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high-energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact. Upon activation using UV laser pulses, efficient photodissociation of glycopeptides is achieved with production of multiple sequence ions that enable robust and precise localization of O-GlcNAc sites. Application of this method to tryptic peptides originating from O-GlcNAcylated proteins TAB1 and Polyhomeotic confirmed previously reported O-GlcNAc sites in TAB1 (S395 and S396) and uncovered new sites within both proteins. We expect this strategy will complement existing MS/MS methods and be broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.
O-GlcNAc proteins:
PHP, TAB1
Tan HY, Eskandari R, Shen D, Zhu Y, Liu TW, Willems LI, Alteen MG, Madden Z, Vocadlo DJ. Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates. Journal of the American Chemical Society 2018 140(45) 30296064
Abstract:
The modification of proteins with O-linked N-acetylglucosamine ( O-GlcNAc) by the enzyme O-GlcNAc transferase (OGT) has emerged as an important regulator of cellular physiology. Metabolic labeling strategies to monitor O-GlcNAcylation in cells have proven of great value for uncovering the molecular roles of O-GlcNAc. These strategies rely on two-step labeling procedures, which limits the scope of experiments that can be performed. Here, we report on the creation of fluorescent uridine 5'-diphospho- N-acetylglucosamine (UDP-GlcNAc) analogues in which the N-acyl group of glucosamine is modified with a suitable linker and fluorophore. Using human OGT, we show these donor sugar substrates permit direct monitoring of OGT activity on protein substrates in vitro. We show that feeding cells with a corresponding fluorescent metabolic precursor for the last step of the hexosamine biosynthetic pathway (HBP) leads to its metabolic assimilation and labeling of O-GlcNAcylated proteins within live cells. This one-step metabolic feeding strategy permits labeling of O-GlcNAcylated proteins with a fluorescent glucosamine-nitrobenzoxadiazole (GlcN-NBD) conjugate that accumulates in a time- and dose-dependent manner. Because no genetic engineering of cells is required, we anticipate this strategy should be generally amenable to studying the roles of O-GlcNAc in cellular physiology as well as to gain an improved understanding of the regulation of OGT within cells. The further expansion of this one-step in-cell labeling strategy should enable performing a range of experiments including two-color pulse chase experiments and monitoring OGT activity on specific protein substrates in live cells.
O-GlcNAc proteins:
NU214, NUP62, NU153, KCC4
Species: Homo sapiens
Download
Hastings NB, Wang X, Song L, Butts BD, Grotz D, Hargreaves R, Fred Hess J, Hong KK, Huang CR, Hyde L, Laverty M, Lee J, Levitan D, Lu SX, Maguire M, Mahadomrongkul V, McEachern EJ, Ouyang X, Rosahl TW, Selnick H, Stanton M, Terracina G, Vocadlo DJ, Wang G, Duffy JL, Parker EM, Zhang L. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Molecular neurodegeneration 2017 12(1) 28521765
Abstract:
Hyperphosphorylation of microtubule-associated protein tau is a distinct feature of neurofibrillary tangles (NFTs) that are the hallmark of neurodegenerative tauopathies. O-GlcNAcylation is a lesser known post-translational modification of tau that involves the addition of N-acetylglucosamine onto serine and threonine residues. Inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc modification, has been shown to reduce tau pathology in several transgenic models. Clarifying the underlying mechanism by which OGA inhibition leads to the reduction of pathological tau and identifying translatable measures to guide human dosing and efficacy determination would significantly facilitate the clinical development of OGA inhibitors for the treatment of tauopathies.
O-GlcNAc proteins:
TAU
Species: Homo sapiens
Download
Liu TW, Myschyshyn M, Sinclair DA, Cecioni S, Beja K, Honda BM, Morin RD, Vocadlo DJ. Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster. Nature chemical biology 2017 13(2) 27918560
Abstract:
N-Acetylglucosamine β-O-linked to nucleocytoplasmic proteins (O-GlcNAc) is implicated in the regulation of gene expression in organisms, from humans to Drosophila melanogaster. Within Drosophila, O-GlcNAc transferase (OGT) is one of the Polycomb group proteins (PcGs) that act through Polycomb group response elements (PREs) to silence homeotic (HOX) and other PcG target genes. Using Drosophila, we identify new O-GlcNAcylated PcG proteins and develop an antibody-free metabolic feeding approach to chemoselectively map genomic loci enriched in O-GlcNAc using next-generation sequencing. We find that O-GlcNAc is distributed to specific genomic loci both in cells and in vivo. Many of these loci overlap with PREs, but O-GlcNAc is also present at other loci lacking PREs. Loss of OGT leads to altered gene expression not only at loci containing PREs but also at loci lacking PREs, including several heterochromatic genes. These data suggest that O-GlcNAc acts through multiple mechanisms to regulate gene expression in Drosophila.
O-GlcNAc proteins:
PHO, HCF
Download
Roth C, Chan S, Offen WA, Hemsworth GR, Willems LI, King DT, Varghese V, Britton R, Vocadlo DJ, Davies GJ. Structural and functional insight into human O-GlcNAcase. Nature chemical biology 2017 13(6) 28346405
Abstract:
O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.
O-GlcNAc proteins:
TAB1
Species: Homo sapiens
Download
Zhu Y, Liu TW, Madden Z, Yuzwa SA, Murray K, Cecioni S, Zachara N, Vocadlo DJ. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. Journal of molecular cell biology 2016 8(1) 26031751
Abstract:
O-glycosylation of the nuclear pore complex (NPC) by O-linked N-acetylglucosamine (O-GlcNAc) is conserved within metazoans. Many nucleoporins (Nups) comprising the NPC are constitutively O-GlcNAcylated, but the functional role of this modification remains enigmatic. We show that loss of O-GlcNAc, induced by either inhibition of O-GlcNAc transferase (OGT) or deletion of the gene encoding OGT, leads to decreased cellular levels of a number of natively O-GlcNAcylated Nups. Loss of O-GlcNAc enables increased ubiquitination of these Nups and their increased proteasomal degradation. The decreased half-life of these deglycosylated Nups manifests in their gradual loss from the NPC and a downstream malfunction of the nuclear pore selective permeability barrier in both dividing and post-mitotic cells. These findings define a critical role of O-GlcNAc modification of the NPC in maintaining its composition and the function of the selectivity filter. The results implicate NPC glycosylation as a regulator of NPC function and reveal the role of conserved glycosylation of the NPC among metazoans.
O-GlcNAc proteins:
NUP62
Species: Mus musculus
Download
Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. Journal of molecular biology 2014 426(8) 24444746
Abstract:
The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-D-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model. Here we show that O-GlcNAc modification of full-length human tau impairs the rate and extent of its heparin-induced aggregation without perturbing its activity toward microtubule polymerization. O-GlcNAcylation, however, does not impact the "global-fold" of tau as measured by a Förster resonance energy transfer assay. Similarly, nuclear magnetic resonance studies demonstrated that O-GlcNAcylation only minimally perturbs the local structural and dynamic features of a tau fragment (residues 353-408) spanning the last microtubule binding repeat to the major GlcNAc-acceptor Ser400. These data indicate that the inhibitory effects of O-GlcNAc on tau aggregation may result from enhanced monomer solubility or the destabilization of fibrils or soluble aggregates, rather than by altering the conformational properties of the monomeric protein. This work further underscores the potential of targeting the O-GlcNAc pathway for potential Alzheimer's disease therapeutics.
O-GlcNAc proteins:
TAU
Species: Homo sapiens
Download
Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science (New York, N.Y.) 2013 342(6163) 24311690
Abstract:
Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.
O-GlcNAc proteins:
HCFC1
Species: Homo sapiens
Download
Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. The Journal of biological chemistry 2013 288(21) 23592772
Abstract:
Cancer cell metabolic reprogramming includes a shift in energy production from oxidative phosphorylation to less efficient glycolysis even in the presence of oxygen (Warburg effect) and use of glutamine for increased biosynthetic needs. This necessitates greatly increased glucose and glutamine uptake, both of which enter the hexosamine biosynthetic pathway (HBP). The HBP end product UDP-N-acetylglucosamine (UDP-GlcNAc) is used in enzymatic post-translational modification of many cytosolic and nuclear proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). Here, we observed increased HBP flux and hyper-O-GlcNAcylation in human pancreatic ductal adenocarcinoma (PDAC). PDAC hyper-O-GlcNAcylation was associated with elevation of OGT and reduction of the enzyme that removes O-GlcNAc (OGA). Reducing hyper-O-GlcNAcylation had no effect on non-transformed pancreatic epithelial cell growth, but inhibited PDAC cell proliferation, anchorage-independent growth, orthotopic tumor growth, and triggered apoptosis. PDAC is supported by oncogenic NF-κB transcriptional activity. The NF-κB p65 subunit and upstream kinases IKKα/IKKβ were O-GlcNAcylated in PDAC. Reducing hyper-O-GlcNAcylation decreased PDAC cell p65 activating phosphorylation (S536), nuclear translocation, NF-κB transcriptional activity, and target gene expression. Conversely, mimicking PDAC hyper-O-GlcNAcylation through pharmacological inhibition of OGA suppressed suspension culture-induced apoptosis and increased IKKα and p65 O-GlcNAcylation, accompanied by activation of NF-κB signaling. Finally, reducing p65 O-GlcNAcylation specifically by mutating two p65 O-GlcNAc sites (T322A and T352A) attenuated the induction of PDAC cell anchorage-independent growth. Our data indicate that hyper-O-GlcNAcylation is anti-apoptotic and contributes to NF-κB oncogenic activation in PDAC.
O-GlcNAc proteins:
IKKA, TF65
Species: Homo sapiens
Download
Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. The Journal of biological chemistry 2012 287(19) 22311971
Abstract:
Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-D-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for k(cat)/K(m) values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 μM to over 20 μM), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of k(cat)/K(m) values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity.
O-GlcNAc proteins:
TAU, NUP62, TAB1, KCC4, CARM1
Download
Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nature chemical biology 2012 8(4) 22366723
Abstract:
Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.
O-GlcNAc proteins:
TAU
Species: Homo sapiens
Download
Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino acids 2011 40(3) 20706749
Abstract:
The microtubule-associated protein tau is known to be post-translationally modified by the addition of N-acetyl-D: -glucosamine monosaccharides to certain serine and threonine residues. These O-GlcNAc modification sites on tau have been challenging to identify due to the inherent complexity of tau from mammalian brains and the fact that the O-GlcNAc modification typically has substoichiometric occupancy. Here, we describe a method for the production of recombinant O-GlcNAc modified tau and, using this tau, we have mapped sites of O-GlcNAc on tau at Thr-123 and Ser-400 using mass spectrometry. We have also detected the presence of a third O-GlcNAc site on either Ser-409, Ser-412, or Ser-413. Using this information we have raised a rabbit polyclonal IgG antibody (3925) that detects tau O-GlcNAc modified at Ser-400. Further, using this antibody we have detected the Ser-400 tau O-GlcNAc modification in rat brain, which confirms the validity of this in vitro mapping approach. The identification of these O-GlcNAc sites on tau and this antibody will enable both in vivo and in vitro experiments designed to understand the possible functional roles of O-GlcNAc on tau.
O-GlcNAc proteins:
TAU
Species: Homo sapiens
Download
Macauley MS, Shan X, Yuzwa SA, Gloster TM, Vocadlo DJ. Elevation of Global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chemistry & biology 2010 17(9) 20851344
Abstract:
The O-GlcNAc modification is proposed to be a nutrient sensor with studies suggesting that global increases in O-GlcNAc levels cause insulin resistance and impaired glucohomeostasis. We address this hypothesis by using a potent and selective inhibitor of O-GlcNAcase, known as NButGT, in a series of in vivo studies. Treatment of rats and mice with NButGT, for various time regimens and doses, dramatically increases O-GlcNAc levels throughout all tissues but does not perturb insulin sensitivity or alter glucohomeostasis. NButGT also does not affect the severity or onset of insulin resistance induced by a high-fat diet. These results suggest that pharmacological increases in global O-GlcNAc levels do not cause insulin resistance nor do they appear to disrupt glucohomeostasis. Therefore, the protective benefits of elevated O-GlcNAc levels may be achieved without deleteriously affecting glucohomeostasis.
O-GlcNAc proteins:
SP1
Download
Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America 2003 100(16) 12874386
Abstract:
The glycosylation of serine and threonine residues with a single GlcNAc moiety is a dynamic posttranslational modification of many nuclear and cytoplasmic proteins. We describe a chemical strategy directed toward identifying O-GlcNAc-modified proteins from living cells or proteins modified in vitro. We demonstrate, in vitro, that each enzyme in the hexosamine salvage pathway, and the enzymes that affect this dynamic modification (UDP-GlcNAc:polypeptidtyltransferase and O-GlcNAcase), tolerate analogues of their natural substrates in which the N-acyl side chain has been modified to bear a bio-orthogonal azide moiety. Accordingly, treatment of cells with N-azidoacetylglucosamine results in the metabolic incorporation of the azido sugar into nuclear and cytoplasmic proteins. These O-azidoacetylglucosamine-modified proteins can be covalently derivatized with various biochemical probes at the site of protein glycosylation by using the Staudinger ligation. The approach was validated by metabolic labeling of nuclear pore protein p62, which is known to be posttranslationally modified with O-GlcNAc. This strategy will prove useful for both the identification of O-GlcNAc-modified proteins and the elucidation of the specific residues that bear this saccharide.
O-GlcNAc proteins:
NUP62
Species: Homo sapiens
Download
Page 1 of 1