REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (9 results)


Wang F, Chen L, Zhang B, Li Z, Shen M, Tang L, Zhang Z, Shao J, Zhang F, Zheng S, Tan S. O-GlcNAcylation Coordinates Glutaminolysis by Regulating the Stability and Membrane Trafficking of ASCT2 in Hepatic Stellate Cells. Journal of clinical and translational hepatology 2022 10(6) 36381090
Abstract:
Recognition of excessive activation of hepatic stellate cells (HSCs) in liver fibrosis prompted us to investigate the regulatory mechanisms of HSCs. We aimed to examine the role of O-GlcNAcylation modification of alanine, serine, cysteine transporter 2 (ASCT2) in HSCs and liver fibrosis.
O-GlcNAc proteins:
AAAT
Species: Homo sapiens
Download
Ning D, Chen J, Du P, Liu Q, Cheng Q, Li X, Zhang B, Chen X, Jiang L. The crosstalk network of XIST/miR-424-5p/OGT mediates RAF1 glycosylation and participates in the progression of liver cancer. Liver international : official journal of the International Association for the Study of the Liver 2021 41(8) 33909326
Abstract:
Liver cancer is a major public health concern, but the mechanistic actions of biomarkers contributing to liver cancer remain to be determined. In this study, we aimed to investigate the regulatory cascade of microRNA-424-5p (miR-424-5p), X-inactive-specific transcript (XIST) and O-GlcNAc transferase (OGT) in liver cancer.
O-GlcNAc proteins:
RAF1
Species: Homo sapiens
Download
Hua Q, Zhang B, Xu G, Wang L, Wang H, Lin Z, Yu D, Ren J, Zhang D, Zhao L, Zhang T. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin. Oncogene 2021 40(46) 34608265
Abstract:
Metastasis is the leading cause of colorectal cancer (CRC)-induced death. However, the underlying molecular mechanisms of CRC metastasis are poorly understood. Metabolic reprogramming is an intrinsic feature of cancer, which have complicated effects on cancer metastasis. Here, we find that a novel metastasis-related protein, cell migration-inducing and hyaluronan-binding protein (CEMIP), can act as a novel adaptor protein of O-GlcNAc transferase (OGT) to promote CRC metastasis through glutamine metabolic reprogramming. Mechanistically, CEMIP interacts with OGT and β-catenin, which leads to elevated O-GlcNAcylation of β-catenin and enhanced β-catenin nuclear translocation from cytomembrane. Furthermore, accumulated β-catenin in nucleus enhances the transcription of CEMIP to reciprocally regulate β-catenin and contributes to over-expression of glutaminase 1 and glutamine transporters (SLC1A5 and SLC38A2). Combinational inhibition of CEMIP and glutamine metabolism could dramatically attenuate the metastasis of CRC in vivo. Collectively, this study reveals the importance of glutamine metabolic reprogramming in CEMIP-induced CRC metastasis, indicating the great potential of CEMIP and glutamine metabolism for CRC metastasis prevention.
O-GlcNAc proteins:
CTNB1
Species: Homo sapiens
Download
Yang Y, Fu M, Li MD, Zhang K, Zhang B, Wang S, Liu Y, Ni W, Ong Q, Mi J, Yang X. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nature communications 2020 11(1) 31924761
Abstract:
Excessive visceral fat accumulation is a primary risk factor for metabolically unhealthy obesity and related diseases. The visceral fat is highly susceptible to the availability of external nutrients. Nutrient flux into the hexosamine biosynthetic pathway leads to protein posttranslational modification by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. O-GlcNAc transferase (OGT) is responsible for the addition of GlcNAc moieties to target proteins. Here, we report that inducible deletion of adipose OGT causes a rapid visceral fat loss by specifically promoting lipolysis in visceral fat. Mechanistically, visceral fat maintains a high level of O-GlcNAcylation during fasting. Loss of OGT decreases O-GlcNAcylation of lipid droplet-associated perilipin 1 (PLIN1), which leads to elevated PLIN1 phosphorylation and enhanced lipolysis. Moreover, adipose OGT overexpression inhibits lipolysis and promotes diet-induced obesity. These findings establish an essential role for OGT in adipose tissue homeostasis and indicate a unique potential for targeting O-GlcNAc signaling in the treatment of obesity.
O-GlcNAc proteins:
PLIN1
Species: Mus musculus
Download
Yang Y, Li X, Luan HH, Zhang B, Zhang K, Nam JH, Li Z, Fu M, Munk A, Zhang D, Wang S, Liu Y, Albuquerque JP, Ong Q, Li R, Wang Q, Robert ME, Perry RJ, Chung D, Shulman GI, Yang X. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proceedings of the National Academy of Sciences of the United States of America 2020 117(28) 32601203
Abstract:
Enhanced inflammation is believed to contribute to overnutrition-induced metabolic disturbance. Nutrient flux has also been shown to be essential for immune cell activation. Here, we report an unexpected role of nutrient-sensing O-linked β-N-acetylglucosamine (O-GlcNAc) signaling in suppressing macrophage proinflammatory activation and preventing diet-induced metabolic dysfunction. Overnutrition stimulates an increase in O-GlcNAc signaling in macrophages. O-GlcNAc signaling is down-regulated during macrophage proinflammatory activation. Suppressing O-GlcNAc signaling by O-GlcNAc transferase (OGT) knockout enhances macrophage proinflammatory polarization, promotes adipose tissue inflammation and lipolysis, increases lipid accumulation in peripheral tissues, and exacerbates tissue-specific and whole-body insulin resistance in high-fat-diet-induced obese mice. OGT inhibits macrophage proinflammatory activation by catalyzing ribosomal protein S6 kinase beta-1 (S6K1) O-GlcNAcylation and suppressing S6K1 phosphorylation and mTORC1 signaling. These findings thus identify macrophage O-GlcNAc signaling as a homeostatic mechanism maintaining whole-body metabolism under overnutrition.
O-GlcNAc proteins:
KS6B1, KS6B1
Download
Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR 3rd, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2020 39(3) 31501520
Abstract:
Cancer cells are known to adopt aerobic glycolysis in order to fuel tumor growth, but the molecular basis of this metabolic shift remains largely undefined. O-GlcNAcase (OGA) is an enzyme harboring O-linked β-N-acetylglucosamine (O-GlcNAc) hydrolase and cryptic lysine acetyltransferase activities. Here, we report that OGA is upregulated in a wide range of human cancers and drives aerobic glycolysis and tumor growth by inhibiting pyruvate kinase M2 (PKM2). PKM2 is dynamically O-GlcNAcylated in response to changes in glucose availability. Under high glucose conditions, PKM2 is a target of OGA-associated acetyltransferase activity, which facilitates O-GlcNAcylation of PKM2 by O-GlcNAc transferase (OGT). O-GlcNAcylation inhibits PKM2 catalytic activity and thereby promotes aerobic glycolysis and tumor growth. These studies define a causative role for OGA in tumor progression and reveal PKM2 O-GlcNAcylation as a metabolic rheostat that mediates exquisite control of aerobic glycolysis.
O-GlcNAc proteins:
KPYM
Species: Homo sapiens
Download
Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, Simons BW, Ballew M, Nugent K, Groves J, Williams RD, Shiraishi T, Verdone J, Yildirir G, Henry R, Zhang B, Wong J, Wang KK, Nelkin BD, Pienta KJ, Felsher D, Zachara NE, Tran PT. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. The Journal of clinical investigation 2018 128(11) 30130254
Abstract:
Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked β-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.
O-GlcNAc proteins:
MYC
Species: Homo sapiens
Download
Ruan HB, Ma Y, Torres S, Zhang B, Feriod C, Heck RM, Qian K, Fu M, Li X, Nathanson MH, Bennett AM, Nie Y, Ehrlich BE, Yang X. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes & development 2017 31(16) 28903979
Abstract:
Starvation induces liver autophagy, which is thought to provide nutrients for use by other organs and thereby maintain whole-body homeostasis. Here we demonstrate that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Genetic ablation of OGT in mouse livers reduces autophagic flux and the production of glucose and ketone bodies. Upon glucagon-induced calcium signaling, calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates OGT, which in turn promotes O-GlcNAc modification and activation of Ulk proteins by potentiating AMPK-dependent phosphorylation. These findings uncover a signaling cascade by which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis.
O-GlcNAc proteins:
ULK1, ULK1
Download
Han C, Shan H, Bi C, Zhang X, Qi J, Zhang B, Gu Y, Yu W. A highly effective and adjustable dual plasmid system for O-GlcNAcylated recombinant protein production in E. coli. Journal of biochemistry 2015 157(6) 25619971
Abstract:
O-GlcNAcylation is a ubiquitous, dynamic and reversible post-translational protein modification in metazoans, and it is catalysed and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. Prokaryotes lack endogenous OGT activity. It has been reported that coexpression of mammalian OGT with its target substrates in Escherichia coli produce O-GlcNAcylated recombinant proteins, but the plasmids used were not compatible, and the expression of both OGT and its target protein were induced by the same inducer. Here, we describe a compatible dual plasmid system for coexpression of OGT and its target substrate for O-GlcNAcylated protein production in E. coli. The approach was validated using the CKII and p53 protein as control. This compatible dual plasmid system contains an arabinose-inducible OGT expression vector with a pUC origin and an isopropyl β-d-thiogalactopyranoside-inducible OGT target substrate expression vector bearing a p15A origin. The dual plasmid system produces recombinant proteins with varying O-GlcNAcylation levels by altering the inducer concentration. More importantly, the O-GlcNAcylation efficiency was much higher than the previously reported system. Altogether, we established an adjustable compatible dual plasmid system that can effectively yield O-GlcNAcylated proteins in E. coli.
O-GlcNAc proteins:
P53, CSK21
Species: Homo sapiens
Download
Page 1 of 1