REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (7 results)


Zhu G, Qian M, Lu L, Chen Y, Zhang X, Wu Q, Liu Y, Bian Z, Yang Y, Guo S, Wang J, Pan Q, Sun F. O-GlcNAcylation of YY1 stimulates tumorigenesis in colorectal cancer cells by targeting SLC22A15 and AANAT. Carcinogenesis 2019 30715269
Abstract:
Emerging studies have revealed that O-GlcNAcylation plays pivotal roles in the tumorigenesis of colorectal cancers. However, the underlying mechanism still remains largely unknown. Here, we demonstrated that YY1 was O-GlcNAcylated by OGT and O-GlcNAcylation of YY1 could increase the protein expression by enhancing its stability. O-GlcNAcylation facilitated transformative phenotypes of CRC cell in a YY1-dependent manner. Also, O-GlcNAcylation stimulates YY1-dependent transcriptional activity. Besides, we also identified the oncoproteins, SLC22A15 and AANAT, which were regulated by YY1 directly, are responsible for the YY1 stimulated tumorigenesis. Furthermore, we identified the main putative O-GlcNAc site of YY1 at Thr236, and mutating of this site decreased the pro-tumorigenic capacities of YY1. We concluded that O-GlcNAcylation of YY1 stimulates tumorigenesis in CRC cells by targeting SLC22A15 and AANAT, suggesting that YY1 O-GlcNAcylation might be a potential effective therapeutic target for treating CRC.
O-GlcNAc proteins:
TYY1
Species: Homo sapiens
Download
Chen Y, Zhu G, Liu Y, Wu Q, Zhang X, Bian Z, Zhang Y, Pan Q, Sun F. O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cellular signalling 2019 63 31394193
Abstract:
Ferroptosis is a metabolism-related cell death. Stimulating ferroptosis in liver cancer cells is a strategy to treat liver cancer. However, how to eradicate liver cancer cells through ferroptosis and the obstacles to inducing ferroptosis in liver cancer remain unclear. Here, we observed that erastin suppressed the malignant phenotypes of liver cancer cells by inhibiting O-GlcNAcylation of c-Jun and further inhibited protein expression, transcription activity and nuclear accumulation of c-Jun. Overexpression of c-Jun-WT with simultaneous PuGNAc treatment conversely inhibited erastin-induced ferroptosis, whereas overexpression of c-Jun-WT alone or overexpression of c-Jun-S73A (a non-O-GlcNAcylated form of c-Jun) with PuGNAc treatment did not exert a similar effect. GSH downregulation induced by erastin was restored by overexpression of c-Jun-WT with simultaneous PuGNAc treatment. In addition, overexpression of c-Jun-WT, but not its S73A mutant, induced PSAT1 and CBS transcription via directly binding to their promoter regions, suggesting that GSH synthesis is regulated by O-GlcNAcylated c-Jun. A positive correlation between c-Jun O-GlcNAcylation and GSH was observed in clinical samples. Collectively, O-GlcNAcylated c-Jun represents an obstructive factor to ferroptosis, and targeting O-GlcNAcylated c-Jun might be helpful for treating liver cancer.
O-GlcNAc proteins:
JUN
Species: Homo sapiens
Download
Chen Y, Liu R, Chu Z, Le B, Zeng H, Zhang X, Wu Q, Zhu G, Chen Y, Liu Y, Sun F, Lu Z, Qiao Y, Wang J. High glucose stimulates proliferative capacity of liver cancer cells possibly via O-GlcNAcylation-dependent transcriptional regulation of GJC1. Journal of cellular physiology 2018 234(1) 30078215
Abstract:
Although it is generally accepted that diabetes is one of the most important risk factors for liver cancer, the underlying mechanism is still not well understood. The purpose of the current study is to further investigate how high concentrations of glucose (HG), a major symptom of diabetes, stimulate the development of liver malignancy. Using data mining, gap junction protein gamma 1 (GJC1) was identified as a critical proto-oncoprotein that is essential for the HG stimulation of proliferative capacity in liver cancer cells. Furthermore, enhanced transcriptional expression of GJC1 might occur after stimulation by HG. A transcription factor zinc finger protein 410 (APA1)-binding motif was found to be located at the -82 to -77 nt region within the GJC1 promoter. Without APA1, HG was unable to increase GJC1 expression. Interestingly, APA1, but not GJC1, can be O-GlcNAcylated in liver cancer cells. Moreover, O-GlcNAcylation is essential for HG-induced APA1 binding to the GJC1 promoter. Notably, global O-GlcNAcylation and expression of APA1 and GJC1 were highly elevated in liver cancer patients with diabetes compared to those in patients without diabetes. The HG-stimulated proliferative capacity was abolished upon decreasing O-GlcNAcylation, which could be reversed gradually by the simultaneous overexpression of APA1 and GJC1. Therefore, GJC1 could be a potential target for preventing liver cancer in patients with diabetes.
O-GlcNAc proteins:
ZN410
Species: Homo sapiens
Download
Qiu H, Liu F, Tao T, Zhang D, Liu X, Zhu G, Xu Z, Ni R, Shen A. Modification of p27 with O-linked N-acetylglucosamine regulates cell proliferation in hepatocellular carcinoma. Molecular carcinogenesis 2017 56(1) 27175940
Abstract:
The tumor suppressor p27, which is a member of the Cip/Kip family of Cyclin-dependent kinase inhibitory proteins (CKIs), controls anti-proliferative events. The post-translational addition of O-GlcNAc to p27 occurs in HEK293T and HCC (hepatocellular carcinoma) cell lines, and we identified Ser2, Ser106, Ser110, Thr157, and Thr198 as the glycosylation sites of p27 based on the Q-TOF spectrum. Here, immunoprecipitation analysis showed that Ser2 was O-GlcNAcylated and that this modification was associated with the increased phosphorylation of p27 at Ser10, ultimately resulting in p27 accumulation in the cytoplasm and increased p27 ubiquitination. In addition, O-GlcNAcylation at Ser2 suppressed Cyclin/CDK complex-p27 interactions by promoting the nuclear export of p27, thus facilitating cell cycle progression. Cell proliferation was negatively regulated when Ser2 of p27 was replaced with Ala. Furthermore, western blot and immunohistochemical analyses of HCC tissues and their corresponding nontumorous tissues were performed, and we found that O-GlcNAcylated p27 correlated with cell proliferation in HCC. Together, our results indicate that the dynamic interplay between O-GlcNAcylation and p27 phosphorylation coordinates and regulates cell proliferation in hepatocellular carcinoma. © 2016 Wiley Periodicals, Inc.
O-GlcNAc proteins:
CDN1B
Species: Homo sapiens
Download