REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Selvan N, Williamson R, Mariappa D, Campbell DG, Gourlay R, Ferenbach AT, Aristotelous T, Hopkins-Navratilova I, Trost M, van Aalten DMF. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nature chemical biology 2017 13(8) 28604694
Abstract:
Protein O-GlcNAcylation is a reversible post-translational modification of serines and threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. The Drosophila melanogaster gene supersex combs (sxc), which encodes OGT, is a polycomb gene, whose null mutants display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved and the underlying mechanisms linking these phenotypes to embryonic development are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and by limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, among others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.