REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard M, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International journal of molecular sciences 2021 22(17) 34502162
Abstract:
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
O-GlcNAc proteins:
A0A096MJ01, A0A096MK30, A0A096MKD4, A0A096P6L8, A0A0G2JSH9, A0A0G2JSP8, A0A0G2JSR0, A0A0G2JSU7, A0A0G2JSW3, A0A0G2JTG7, A0A0G2JTP6, A0A0G2JV65, A0A0G2JVG3, A0A0G2JVH4, A0A0G2JW41, A0A0G2JW94, A0A0G2JWK2, A0A0G2JWS2, A0A0G2JYK0, A0A0G2JZF0, A0A0G2K0F5, A0A0G2K3K2, A0A0G2K3Z9, A0A0G2K401, A0A0G2K5P5, A0A0G2K654, A0A0G2K719, A0A0G2K7F7, A0A0G2K9P4, A0A0G2K9Q9, A0A0G2KAK2, A0A0G2KB63, A0A0H2UHM5, A0A0H2UHQ9, A0A0H2UHZ6, A0A0H2UI36, A0A0U1RRV7, ROA2, B0BNG3, CAH1, SCOT1, B2RYW3, C0JPT7, D3ZCV0, D3ZG43, D3ZIC4, D3ZQM0, D3ZUB0, D3ZZ68, D3ZZN3, D4A0T0, D4A5E5, D4A6Q4, SYNP2, D4A7X7, D4A8X8, D4AA63, D4ACC2, F1LM30, F1LM47, F1LMP9, DESP, F1LP05, F1LP30, F1LSC3, S2512, S2513, F1M3H8, F1M820, F1M865, F1M944, F1M953, F1MAA7, F1MAF7, G3V6E1, G3V6H0, G3V6H5, G3V6P7, G3V6S0, G3V6T7, G3V6Y6, G3V7C6, G3V7J0, G3V826, G3V885, G3V8B0, G3V8L3, G3V8V3, G3V9A3, G3V9U2, M0R5J4, M0R735, M0R757, M0R7S5, M0R9L0, PRDX6, C1QBP, HSPB2, ACOT2, HCD2, PARK7, MDHC, AATM, HBA, FIBG, GPX1, ROA1, MDHM, LDHA, PDIA1, G3P, GSTP1, ALDOA, EF2, AT1A1, BIP, RPN1, ODP2, MLRV, KCRS, HS71A, ATPB, CLH1, AT2A2, DMD, ALDH2, KPYM, AL1A7, ETFA, A1I3, CAH3, FIBB, ECHM, ACADL, PGAM2, MYL3, PGK1, ACLY, THIL, ACSL1, CPT2, CSK21, NDUV2, AT5F1, NDKB, NB5R3, IGG2A, IGG2B, LAC2, UCRI, SDHB, TNNI3, CRYAB, PPIB, PGAM1, RPN2, CAH2, TCPA, VIME, PEBP1, ATP5H, EZRI, QCR2, HS90B, 1433B, ATPG, CRIP2, RSSA, CAV1, LDHB, HSPB1, COF1, TERA, DPYL2, TPIS, DESM, ODPB, TNNT2, AL1A1, ES1, IDHP, MYPC, PSA6, ARF3, 1433G, 1433E, EF1A2, H4, RAN, RS3, AP2B1, RL40, HSP7C, CH60, PHB1, ACTC, 1433T, TBA1A, 1433F, TBB5, NUP54, VDAC2, HS90A, EFTU, PNPH, HSPB6, PTBP1, H2B1, MUG1, ATPO, ANXA2, ADT2, K2C8, PRRC1, NIT2, Q498N4, ACSF2, H2A3, K2C6A, Q4G079, AGFG1, Q4PP99, Q4V8E1, EHD2, Q52KS1, NDUAA, Q5BJZ3, Q5D059, Q5M9H2, Q5RJR9, UBA1, Q5XFV4, LPP, Q5XI38, GDIR1, ODO1, TBA4A, Q5XIH3, ECHB, PDLI5, A1M, CPT1B, NDUS2, ECHA, ENPL, NDUS1, Q66HF3, MAVS, AMPL, ETFB, QCR1, K1C42, Q6IFU9, K1C14, K1C15, K1C13, K1C10, K2C75, K2C1, HNRPU, Q6IMZ3, TS101, RAB1A, PLAK, K2C5, DLDH, SYWC, TBA1B, Q6P9Y4, Q6PDV6, CNDP2, ROA3, CACP, DEST, Q7TQ70, CISY, Q91XN6, SDHA, IDH3A, ACON, AIFM1, MYG, TGM2, HCDH, VDAC1, SC31A
Download
Ma J, Banerjee P, Whelan SA, Liu T, Wei AC, Ramirez-Correa G, McComb ME, Costello CE, O'Rourke B, Murphy A, Hart GW. Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of proteome research 2016 15(7) 27213235
Abstract:
O-linked β-N-acetylglucosamine (O-GlcNAc), a post-translational modification on serine and threonine residues of many proteins, plays crucial regulatory roles in diverse biological events. As a nutrient sensor, O-GlcNAc modification (O-GlcNAcylation) on nuclear and cytoplasmic proteins underlies the pathology of diabetic complications including cardiomyopathy. However, mitochondrial O-GlcNAcylation, especially in response to chronic hyperglycemia in diabetes, has been poorly explored. We performed a comparative O-GlcNAc profiling of mitochondria from control and streptozotocin (STZ)-induced diabetic rat hearts by using an improved β-elimination/Michael addition with isotopic DTT reagents (BEMAD) followed by tandem mass spectrometric analysis. In total, 86 mitochondrial proteins, involved in diverse pathways, were O-GlcNAcylated. Among them, many proteins have site-specific alterations in O-GlcNAcylation in response to diabetes, which suggests that protein O-GlcNAcylation is a novel layer of regulation mediating adaptive changes in mitochondrial metabolism during the progression of diabetic cardiomyopathy.
Download
Page 1 of 1