REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (32 results)


Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature chemical biology 2022 18(2) 34887587
Abstract:
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.
O-GlcNAc proteins:
A0A075B5P4, A0A087WNV1, A0A087WPT1, A0A087WQF8, A0A087WS88, A0A0A0MQM6, A0A0A6YVP0, A0A0A6YY72, A0A0B4J1E2, A0A0G2JFJ6, A0A0G2JFN8, A0A0G2JFY0, A0A0G2JG10, A0A0G2JG59, A0A0G2JG60, A0A0G2JG65, A0A0G2JGL8, A0A0H2UH17, A0A0J9YTU3, A0A0J9YUT8, A0A0J9YUY8, A0A0N4SV00, A0A0N4SV32, A0A0N4SW94, A0A0N5E9G7, A0A0R4J060, A0A0R4J169, A0A0R4J1E3, A0A0R4J1Y4, A0A0R4J260, A1BN54, A1L341, A1L3S7, A2A485, A2A513, A2A5N3, A2A8V8, A2AGK3, LZTS3, A2AM70, A2AMY5, A2APQ6, A2AS44, A2AVJ7, A2AWT6, A2BGG7, KANL3, K1C28, A6X8Z3, A8Y5K6, B0V2N8, B1AU25, TBD2A, THOC2, TPC11, PLXB2, RBM25, B7FAU9, B7ZWM8, B8JK33, B9EHJ3, D3YTT9, D3YUW7, D3YV30, D3YV43, D3YVH4, D3YX49, D3YX64, D3YX85, SAFB1, D3YYT0, D3YZ62, D3YZL1, D3YZT4, D3Z1X3, D3Z2H7, D3Z3E8, D3Z4B0, CCD78, D3Z6N3, CILP2, D6RCG1, E0CY31, E0CYH0, E9PUA5, E9PUJ2, E9PUX0, GCN1, E9PVC6, E9PVG8, KI67, E9PW24, E9PYF4, SET1A, E9PYI8, E9PZW0, E9Q066, E9Q0F0, E9Q0M9, E9Q0U7, E9Q0Y4, E9Q133, E9Q166, E9Q175, E9Q1Z0, E9Q2X6, E9Q3G8, NOLC1, E9Q5F6, E9Q616, MYO1E, E9Q6A9, E9Q6M7, E9Q6T8, E9Q8F0, E9Q9C7, E9Q9H2, E9QA74, E9QAT0, E9QKG6, E9QLM4, E9QN31, E9QNH6, E9QNN1, E9QPE7, E9QPI5, F2Z480, F6S6G6, F6T0G2, F6TFN2, F6TW20, F6WTC8, F6XWD4, F6YRW4, F6YUI5, F7B296, F7C312, FARP1, F8VPX1, F8VQ29, F8WHR6, G3UWP5, G3UWZ0, G3UX48, G3UYD0, G3UYG6, G3UYW3, G3UYZ0, G3X8P9, G3X8Q0, G3X956, SI1L3, G5E839, G5E846, G5E866, G5E879, G5E8C3, G5E8J8, G5E8N3, G5E8T6, H3BJU7, H3BKF6, H3BKM0, H3BKN0, H3BKT5, H3BL49, J3QMC5, J3QNW0, CAN2, ATN1, SRSF5, IMA3, PININ, EIF3D, ATX2, E41L2, UGDH, SP3, IF2B1, ZFR, HIPK1, IGKC, IGHG1, HBA, K2C1, TBA1B, ALBU, HS90A, NUCL, ATX1L, EF1A1, H2B1F, CO1A1, HS90B, TCPA, GELS, HS71L, AP2A2, K1C19, BIP, VIME, MFGM, EIF3A, MCM3, MOES, CTNA1, U2AF2, PDIA3, GRN, PABP1, FKBP4, KIF4, TSP1, GRP75, TKT, BCL6, FOXK1, H14, NEDD4, LMNA, MCM5, K2C6A, IMA1, KPYM, DDX6, ACTN4, EF2, ASXL1, ACTB, ABCE1, RRAS2, H4, HSP7C, CH60, TBA1A, TBB4B, H31, IMB1, TCPB, TCPE, TCPZ, WNK1, H32, MPRIP, G3BP1, TBB5, HNRL2, TOP2A, UBA1, PLAK, IF2P, EPS8, LRIQ1, ZCH18, LMTD2, FA83H, CDCA2, CYTSA, SPP2B, Q3TJ56, K22E, FUBP2, Q3U6F1, Q3U8S1, FOXK2, PUF60, Q3UID0, Q3UJB0, Q3UNN4, SFSWA, K22O, CFA74, Q3UYN2, LRRF1, ESF1, KIF22, Q3V3Y9, Q45VK5, Q4FJZ2, Q4KL80, Q4TU83, PDS5B, DDX17, LRC47, Q52KR6, TR150, NEXMI, JCAD, NUFP2, PRSR1, RBM27, PHF12, UTP18, LC7L3, Q5SUT0, TSR1, MYO1D, Q5U4C5, SIN3A, SRC8, MYL6, STIP1, CAPR1, IMA5, LAP2A, HCFC1, K1C15, SMRD1, FXR1, DDX5, HS71A, SERA, KINH, MYH10, SIN3B, DDX3X, TIF1B, NUP62, K1C12, SQSTM, TOP2B, Q68EM3, CLH1, CDC5L, F120A, CNDG2, NOP58, SCAF8, K1C42, K2C1B, SR140, ZC11A, ABCF1, RRP12, Q6P5B5, UGGG1, XPO1, KIF11, FHOD1, LPPRC, NUP98, Q6PGF5, NEB2, DAPLE, UBE2O, LARP1, NU188, WDR43, 2AAA, Q792Z1, PICAL, UHRF2, MBB1A, Q7TQE2, NU214, WNK4, KIRR1, UBP2L, FLNB, WNK3, Q80ZX0, LPP, ACTBL, P4HTM, MYPT2, HTSF1, IF4B, NU107, WDR3, NOC4L, CE128, NUP93, SUN2, RCC2, EMSY, SYLC, CKAP4, SRRM2, NUP54, PWP2, SYIC, RL1D1, MAP1S, TTC34, SI1L1, RBM14, Q8C872, DIDO1, ATAD2, NUP88, Q8CFQ9, SMC2, UACA, SYEP, TCRG1, OGT1, CCAR1, SLTM, BICRL, P66A, COPA, HMCS1, Q8JZN2, EIF3B, BCLF1, PHLB2, NAT10, ANLN, SDHA, LS14A, MATR3, DDX18, PO121, EIF3L, HNRPL, NU133, EIF3C, ZC3HA, TDIF2, NUP58, CD109, LUZP1, UTP6, MYH9, UHRF1, VIGLN, CCAR2, CUL7, K2C79, Q8VGW3, RBM39, DHX36, SFPQ, ACLY, DDX1, U3IP2, SYYC, RPN1, YTHD2, BMP2K, SNX18, SMCA5, Q921K2, SF3B3, DDX27, Q921S6, SMTN, PP6R3, K2C5, DEN2B, NXF1, NONO, ACON, NMD3, RTCB, CT2NL, HSP7E, NU155, IF2B3, Q9CPN9, SMC1A, SMC3, CXXC1, GARS, CEP72, SC23B, Q9D6D0, NOP56, FIP1, SPB1, MYPT1, NVL, EIF3F, RAI14, RENT1, CPSF1, PESC, VPS35, LIMA1, DKC1, PALLD, NUP50, DDX21, FLII, YBOX3, IQGA1, Q9QUK9, CAF1A, K1C17, MAGD1, MTA2, PR40A, MYO1C, COR1C, E41L3, EHD1, WDR46, ZO2, NU160, ADNP, SYVC, Q9Z1R9, BAZ1B, K1C16, SNUT1, S4R2A9, S4R2J9, V9GX87
Species: Mus musculus
Download
Jackson EG, Cutolo G, Yang B, Yarravarapu N, Burns MWN, Bineva-Todd G, Roustan C, Thoden JB, Lin-Jones HM, van Kuppevelt TH, Holden HM, Schumann B, Kohler JJ, Woo CM, Pratt MR. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) Is a Metabolic Chemical Reporter of O-GlcNAc Modifications, Highlighting the Notable Substrate Flexibility of O-GlcNAc Transferase. ACS chemical biology 2022 17(1) 34931806
Abstract:
Bio-orthogonal chemistries have revolutionized many fields. For example, metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain a bio-orthogonal functionality, such as azides or alkynes. MCRs are metabolically incorporated into glycoproteins by living systems, and bio-orthogonal reactions can be subsequently employed to install visualization and enrichment tags. Unfortunately, most MCRs are not selective for one class of glycosylation (e.g., N-linked vs O-linked), complicating the types of information that can be gleaned. We and others have successfully created MCRs that are selective for intracellular O-GlcNAc modification by altering the structure of the MCR and thus biasing it to certain metabolic pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do the same for the core GalNAc residue of mucin O-linked glycosylation. The most widely applied MCR for mucin O-linked glycosylation, GalNAz, can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz. This results in a mixture of cell-surface and O-GlcNAc labeling. We reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would lock the stereochemistry of this position in place, causing the MCR to be more selective. After synthesis, we found that 4FGalNAz labels a variety of proteins in mammalian cells and does not perturb endogenous glycosylation pathways unlike 4FGalNAc. However, through subsequent proteomic and biochemical characterization, we found that 4FGalNAz does not widely label cell-surface glycoproteins but instead is primarily a substrate for OGT. Although these results are somewhat unexpected, they once again highlight the large substrate flexibility of OGT, with interesting and important implications for intracellular protein modification by a potential range of abiotic and native monosaccharides.
Species: Homo sapiens
Download
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical chemistry 2022 94(7) 35132862
Abstract:
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
O-GlcNAc proteins:
RBM47, E2F8, SBNO1, CNOT1, HMX3, ABTB3, RHG32, P121C, PDLI1, SNP23, PSMD9, TAF4, ARI1A, ABLM1, STX16, HGS, MYPT1, SC16A, SR140, SET1A, FYB1, TIF1A, PPM1G, SHIP2, EIF3D, NUP42, KDM6A, TET3, SI1L1, DC1L2, HNRPR, PRPF3, TPD54, E41L2, ZN207, BUB3, AKAP8, ZNRD2, MYPT2, GANP, HNRPQ, DIAP1, PLIN3, MAFK, TBL1X, MITF, N4BP1, ZC11A, T22D2, PP6R2, ANR17, BCAS1, NCOR1, SPAG7, TIPRL, SPF30, TOX4, TOX, PCF11, AGFG2, ZFPL1, KIF4A, SC24A, SC24B, CNOT4, ASML, M4K4, BPNT1, PX11B, CHK2, LMNA, GLPA, TFR1, ALDOA, GCR, HSPB1, GNAI2, RLA1, RLA2, RLA0, K1C18, K2C8, RB, CATD, SYEP, PTPRC, VIME, GSTP1, HMGB1, ROA1, ATX1L, DERPC, ZN865, TPR, LAMP2, EF2, PLSL, PLST, GLU2B, HCLS1, PO2F1, RAC2, ATF2, ZEP1, TFE2, MUC1, CREB1, JUNB, ATF7, PTN2, DDX5, SON, ATF1, CSK22, NFKB1, FLNA, PUR2, RFX1, CBL, COF1, PTBP1, ARNT, DCK, PYR1, MAP4, CALX, 3MG, PRDX6, CDC27, AMRP, CLIP1, ZEP2, HNRH1, 1433S, ELF1, LSP1, PTN7, IRS1, ADDA, NU214, CUX1, TXLNA, MLH1, ECHA, IF2G, HNF4A, LAP2B, GPDM, RANG, KI67, CRKL, CAPZB, RFX5, SOX2, CAMLG, NASP, FAS, CDK8, SRP09, YLPM1, NU153, RBP2, TAF6, EMD, LRBA, PAPOA, HCFC1, HDGF, AGFG1, HNRPF, HXK2, NUP98, ATX1, RD23B, AF10, AF17, DSRAD, FOXA1, HNRH2, NU107, TPIS, PSME3, TPM4, F193A, GTF2I, PHC1, PRKDC, MAP1A, SARNP, FOXK1, FBLN2, FAM3A, EM55, NFKB2, HNRPU, SPTB2, FOXK2, RUNX1, FLI1, SATB1, SP2, MP2K1, NUCB1, KMT2A, IF4G1, TLE3, TLE4, KPCT, PSME1, GABPA, PRDX1, ACK1, AHNK, IFFO1, GALT2, SRBP2, TROAP, BPTF, TP53B, CBX3, NFAC2, PICAL, CUL4B, ASPP2, NFYC, CDK13, VEZF1, UBP2L, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, UBP10, 2A5D, MEF2D, LASP1, NUMA1, CND1, TEBP, PCBP1, RBMS2, SF3A1, TSN, SF01, MED1, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, DPYL2, TAF9, MAPK3, CSPP1, PDS5A, QSER1, AAK1, LRRF1, VP26B, ACSF3, TPRN, CRTC2, PAN3, YIF1B, PRC2B, CEP78, ZN362, FKB15, LRIF1, CAF17, UBAP2, NT5D1, AHDC1, LYRM7, RPRD2, ZN318, TASO2, TBC9B, ARID2, C19L1, ABLM2, TWF2, GRHL2, CPZIP, NIPBL, LIN54, ZCHC8, C2D1A, SCYL2, NFRKB, RSBNL, MDEAS, ZC3HE, LARP1, SAMD1, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NBEL2, CO039, SRCAP, UBN2, TM1L2, ASXL2, SPT6H, MEPCE, BOP, KDM3B, ERMP1, TRM1L, ZCCHV, KANL1, POGZ, ZFY16, NUFP2, MAVS, EMSY, RAI1, I2BP2, SRGP1, RHG30, SH3R1, HUWE1, YTHD3, GALT7, LYRIC, BCL9L, CASZ1, TSYL5, DDX42, CACL1, P66A, I2BP1, VRK3, FOXP4, ARI3B, TEX2, MGAP, ANKH1, SUGP1, MILK2, ERF3B, K2013, PHAR4, XRN1, ZN687, FNBP4, ARFG1, ENAH, NHLC2, AVL9, XXLT1, GOLM1, TXND5, PAIRB, CHSTE, SLAI1, TNR6A, PHC3, SP20H, VP37A, KMT2C, ARI1B, KNL1, NEDD1, ALMS1, PREX1, DLG5, GEMI5, PIGO, UBS3B, WIPF2, FRS2, PDC6I, ZFN2B, TPC12, SEN15, PCNP, LMO7, ATX2L, CSKI2, PSPC1, P66B, GBF1, SMG7, RTF1, TOPB1, PHF3, MAML1, TTC9A, PRCC, RREB1, CBP, DDX17, SEM4D, ARHG1, GPKOW, FUBP2, LPP, TTC28, PF21A, FAF2, ESS2, EDC3, A7L3B, P121A, PDLI5, FUBP3, VCIP1, PDLI2, Z512B, ZFR, EP400, PRRC1, NOL4L, RBM14, PURB, NACC1, CIC, MED15, NUDC1, SIN3A, AEDO, MINT, HTF4, CNN2, RGPD5, ATX2, HCD2, S29A1, ARI3A, SH3G1, TRIR, DPH2, MGME1, ERP44, ESYT1, CCM2, CNPY3, WAC, DIDO1, HGH1, MMTA2, PAXX, NTM1A, RBM4, SGPP1, HEMGN, HDHD5, YTHD1, FTO, CEP44, BC11B, PITH1, SP130, BRD8, RGAP1, I2BPL, ADNP, DHX36, FOXP1, CENPH, WNK1, E41L1, ZHX3, YTDC2, RANB3, PHAX, ECT2, CNO10, MLXIP, PKHA5, PKHA1, RC3H2, LY9, RDH14, TAF9B, NCOA5, TANC2, TNR6C, CHD8, SDF2L, ARFG3, UBN1, RTN4, PDLI7, CHSTC, STRN4, PNO1, BMP2K, RBM12, STAU2, TXLNG, PNPO, CARF, TAB2, TMOD3, CDK12, F120A, HPBP1, ITSN2, CNOT2, CHMP5, VAPA, CAMP3, RBM27, KANL3, RERE, ZN219, SE1L1, STAP2, LIMD1, TCF20, SEPT9, UBQL2, TRPS1, S30BP, NRBP, EI2BD, SIX4, APC7, TASOR, GMEB2, PARP4, MA1B1, ACINU, ZHX1, CDV3, MRTFB, ZBT21, YETS2, HECD1, ZMYD8, SCAF8, PP6R1, TRI33, TNR6B, ZC3H4, SHAN2, SRRM2, CTND2, SCML2, ZN148, T3JAM, VDAC3, AKAP2, DDX52, NOP58, GIT1, ZN281, SIT1, SALL2, ARIP4, CRBG1, HYOU1, KLF12, PRC2C, YTHD2, CD2AP, TNPO3, SRPRB, TSSC4, NUBP2, HCFC2, FHOD1, NCOR2, GMEB1, NCOA3, S23IP
Species: Homo sapiens
Download
Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS chemical biology 2022 17(3) 35254053
Abstract:
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.