REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (5 results)


Wang G, Li Y, Wang T, Wang J, Yao J, Yan G, Zhang Y, Lu H. Multi-comparative Thermal Proteome Profiling Uncovers New O-GlcNAc Proteins in a System-wide Method. Analytical chemistry 2023 95(2) 36580660
Abstract:
Among diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery. Melting curves of proteins under different treatments were profiled and compared with high reproducibility and consistency. Consequently, proteins with significantly shifted stabilities caused by OGT and uridine-5'-diphosphate N-acetylglucosamine were screened out from which new O-GlcNAcylated proteins were uncovered.
Species: Homo sapiens
Download
Wang J, Dou B, Zheng L, Cao W, Zeng X, Wen Y, Ma J, Li X. Synthesis of Na(2)S(2)O(4) mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition. Bioorganic & medicinal chemistry letters 2021 48 34229054
Abstract:
A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.
O-GlcNAc proteins:
PGP, EIFCL, KIF2A, PDLI1, BACH, DFFA, CLIC1, EIF3F, IF2B3, RTCA, PSDE, PPP6, RPC1, PSA7, HNRDL, SC16A, RPAC1, NKRF, EIF3H, PAPS1, SNUT1, ARK72, MYO1B, IDH3B, SAHH2, PLIN3, IMA7, UGDH, CTND1, SNX2, BRD4, WDR1, TBCA, FLNB, PR40A, MPPB, NDUS3, ECI2, CSDE1, U520, WDHD1, EIF3G, PSD10, IDHC, GLRX3, RL1D1, CIAO1, PLPHP, ERLN2, GLSK, SC31A, UBR5, ELP1, VAPB, 6PGL, AGM1, AHSA1, PSMG1, SGPL1, AP2A1, STAU1, TTC4, BPNT1, MBD3, TOM40, ACL6A, GSHR, PNPH, CYTB, KITH, P53, TPM3, PROF1, FUMH, ODPA, CY1, SRP19, DLDH, RU2A, UCHL1, ALDOC, THIO, KAP0, ESTD, ODPB, PYGB, ACADM, G6PD, ADHX, CDK4, HARS1, PEPD, P4HA1, ETFA, MIF, AK1A1, CCNB1, GLNA, DESP, FER, UBF1, PRS6A, RL35A, NELFE, RCC1, E2AK2, SPEE, ANXA7, RAB6A, PSB1, IMDH1, GSTM3, VATB2, FLNA, ACOHC, SDHB, PIMT, FBRL, NDKB, ADRO, TCEA1, TBG1, MAOM, IF4B, THTM, RS12, BRD2, DNJB1, PSA1, PSA2, PSA4, STOM, PYR1, PSB4, PSB6, NDUS1, DPOD1, AMPL, ERP29, PRDX3, ECHM, PEBP1, PDIA3, HMOX2, PURA2, PUR8, AL1B1, RPB2, GDIA, TIA1, QCR1, HNRH3, STIP1, PRDX2, P5CR1, DUT, PROF2, SPB6, RADI, T2FA, MYH9, MYH10, FUS, PRS7, MP2K2, HEM6, GNL1, ODO2, SRP14, TALDO, ETFB, VATA, IF4A3, TXLNA, BUD31, CSK, THIM, LIS1, NAMPT, PRS6B, RECQ1, NOP2, CRKL, NSF, CAPZB, COPD, IDHP, AL9A1, RL34, FAS, SYCC, PSB3, IDH3A, SERPH, ANX11, FXR1, FXR2, SMCA4, GALK1, ROA3, HNRPM, IMA5, GDIR1, HNRPF, KIF11, THOP1, CAZA1, BIEA, MAP11, SUCA, SC24C, DRG2, ECHB, DSRAD, HNRH2, IF6, CORO7, ARPC4, CD81, SC61B, MYL6, PSA6, CDC42, SRP54, UB2D3, UBC12, ARP3, RL37A, COPZ1, NTF2, 1433G, PP1A, PP1B, SMD2, PRS10, ERF1, CNBP, H4, RAP1A, RS30, GBB1, GBB2, TRA2B, 2ABA, DYL1, RL38, PP2AA, TBA1B, GSTO1, DCD, RT05, RT09, RL36A, H33, VIGLN, FKBP3, DHSO, EXOSX, ODO1, MMSA, TF65, LGUL, 1433F, CSTF1, SRS11, EF1A2, PTN11, PUR1, GFPT1, C1QBP, BAX, SRSF4, RBBP4, ASPH, GRSF1, AIMP1, ILF3, CSN1, RED, MTAP, TADBP, ROA0, STX5, SRSF9, SRSF5, IFIT5, EIF3I, DC1I2, PICAL, ULA1, SNW1, FHL1, BOP1, UBP2L, DYHC1, EI2BA, TRI25, FLNC, GNA13, CAPR1, KPRA, UBP10, CHD4, NUMA1, GAPD1, EMC2, SEPT2, IF4H, IPYR, CNN3, SC23B, SF01, TRIP6, MARE1, ELAV1, TOM34, VAMP3, ADRM1, PKN2, CSRP2, DPYL2, RBBP7, H2B2E, PCKGM, TRXR1, TIM50, FA98B, ZN326, PREP, RRP12, SYAM, EXOS6, CAF17, UBR4, NT5D1, PDE12, JMJD6, CDC73, EDC4, PRP8, RL22L, SYDM, GGYF2, HSDL2, TM10C, ZCCHV, DHX29, DCXR, HUWE1, ACOT1, KTN1, CARM1, STX12, HORN, SPB1, SRRM1, SUV3, TXND5, SCPDL, FA98A, PCAT1, FAD1, UBA3, NEK9, BRX1, ZC3HF, SCFD1, HNRLL, ATX2L, PSPC1, P66B, DNJC9, DDX1, H1X, PSMF1, RT27, LAR4B, ARC1A, RENT1, FUBP1, P5CR2, TRM61, ZCCHL, PGAM5, FUBP3, SPF45, THOC3, ZFR, SNX27, RBM14, PRPK, TBCB, CDC5L, PARK7, HCD2, ROAA, EBP2, VRK1, NIPS1, MEP50, TBA1C, ERP44, NTPCR, DDX23, MTNA, NTM1A, TM109, SYTM, THIC, RBM4, HDHD5, ITPA, EIF2A, PDIP3, MK67I, GTPB4, REN3B, API5, UBE2O, WDR12, SLIRP, NAA50, ILKAP, SLK, PININ, YTDC2, RPF2, QTRT2, ARMT1, CSN7B, ELP3, KT3K, MRM3, GLOD4, MCCB, CWC22, WDR6, VTA1, EXOS4, INO1, LUC7L, TIGAR, XPP1, SIAS, PHP14, HELLS, ECHD1, RBM12, DD19A, SEP11, TBC13, ATD3A, DDX18, PNPO, RBM28, LYAR, DPP3, BCLF1, F120A, HPBP1, MAT2B, RRBP1, GMPR2, GRHPR, TES, CHRD1, SEPT9, EI2BD, DBNL, DDX41, APC7, STML2, MRT4, ACINU, NUP50, PSME2, MYO6, CHIP, CSN3, SRRM2, CD11A, SMC3, RTRAF, PIN4, PLAP, NUDC, COF2, AP3M1, TR150, NOP58, SGT1, SYYM, SBDS, EXOS1, SF3B6, RRP15, RT23, STRAP, CHTOP, SAMH1, TLN1, HYOU1, ATG4B, TBL2, PRC2C, PPME1, YTHD2, SNX9, SERC, CLIC4, DC1L1, S23IP
Species: Homo sapiens
Download
Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J, Hovasse A, Schaeffer-Reiss C, Cianférani S, Rolando C, Bray F, Duez H, Eeckhoute J, Lefebvre T, Staels B, Lefebvre P. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America 2018 115(47) 30397120
Abstract:
The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.
O-GlcNAc proteins:
A4D111, POTEF, A5GZ75, AXA2L, P121C, A9Z0R7, EIFCL, C3UMV2, F1JVV5, I6TRR8, MYO1C, IF2B3, DDX3X, TCRG1, OPLA, XPO1, SC16A, SET1A, OGT1, EIF3D, DDX3Y, DHX15, PRP4, SERA, PSMD3, HNRPR, ACTN4, MYO1B, AKAP8, HNRPQ, UGDH, USO1, WDR1, ANR17, GGCT, LX12B, FLNB, PR40A, SF3B1, SPB7, NU155, KRT38, SC24D, GLSK, SC31A, ELP1, SMC2, AGM1, UTS2, BAG4, SC24A, SC24B, AP2A1, LDHA, AL1A1, PGK1, A2MG, CO3, CYTA, KV117, IGHG1, IGHA1, APOE, APOC2, FIBG, TFR1, TRFE, CATA, ALDOA, TBB4A, G3P, HSPB1, RPN1, RPN2, AT1A1, ARGI1, ALDH2, S10A8, ADT2, GELS, ATPB, APOA4, ENOA, PYGL, G6PI, TPM3, PDIA1, CATD, ANXA2, CAN1, TBB5, HS90A, SP1, CO1A2, HS90B, PO2F2, GSTP1, VILI, ANXA4, PARP1, LKHA4, ATX1L, POTEI, UBB, UBC, SAA2, HS71A, HS71B, IGG1, TBA3C, TBA3D, THIO, CH60, BIP, HSP7C, PYGB, PYGM, G6PD, PYC, C1TC, NFH, IMDH2, XRCC6, XRCC5, AT1A3, EF2, PDIA4, P4HA1, ENOB, GFAP, ENPL, IDE, PO2F1, HNRPL, PLAK, DESP, AT2A2, HSP76, DDX5, LEG3, TCPA, RL7, VINC, E2AK2, ITIH2, ANXA7, HNF1A, FILA, CD11B, FLNA, VDAC1, TGM2, PUR2, UBA1, NDKB, TGM1, EST1, SFPQ, SAHH, MCM3, ATPA, PTBP1, SYVC, ABCD3, GRN, TKT, SPB3, AL4A1, PDIA3, KPYR, RPB2, AKT1, PUR9, HNRH1, CASPE, 1433S, S10AB, PRDX2, MCM4, MCM7, HS71L, CTNB1, IRS1, GDE, MYH9, FUS, SPB5, NUP62, TALDO, GRP75, CAPG, TCPZ, STAT3, MDHC, MDHM, ECHA, GARS, SYIC, HUTH, LPPRC, MATR3, MSH2, VDAC2, SYQ, LEG7, COPD, SPB4, TCPE, AL9A1, LMAN1, FMO5, TCPG, SYAC, RBM25, KLK7, DYN2, TCPQ, TCPD, RAB7A, HCFC1, KS6A3, HNRPM, HXK2, CAZA1, NUP98, ACLY, COPB, COPA, SC24C, SYRC, SYYC, UBP14, HSP72, P5CS, XPO2, TERA, MTP, AF17, PSA, HNRH2, EIF3B, SYMC, NU107, EPIPL, TPIS, ACTB, IF4A1, HNRPK, 1433G, PRS4, ACTA, H4, RS27A, RL40, 1433Z, RACK1, ACTG, ACTH, ACTC, ACTS, TBA1B, TBA4A, TBB4B, PRKDC, DCD, VIGLN, CLH1, HNRPU, FABP5, MSHR, EWS, SEMG2, DSG1,