Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)

Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015 64(10) 26109417
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
O-GlcNAc proteins:
Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, Vecoli C, Hart GW, Murphy AM. O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circulation research 2008 103(12) 18988896
In addition to O-phosphorylation, O-linked modifications of serine and threonine by beta-N-acetyl-D-glucosamine (GlcNAc) may regulate muscle contractile function. This study assessed the potential role of O-GlcNAcylation in cardiac muscle contractile activation. To identify specific sites of O-GlcNAcylation in cardiac myofilament proteins, a recently developed methodology based on GalNAz-biotin labeling followed by dithiothreitol replacement and light chromatography/tandem mass spectrometry site mapping was adopted. Thirty-two O-GlcNAcylated peptides from cardiac myofilaments were identified on cardiac myosin heavy chain, actin, myosin light chains, and troponin I. To assess the potential physiological role of the GlcNAc, force-[Ca(2+)] relationships were studied in skinned rat trabeculae. Exposure to GlcNAc significantly decreased calcium sensitivity (pCa50), whereas maximal force (F(max)) and Hill coefficient (n) were not modified. Using a pan-specific O-GlcNAc antibody, it was determined that acute exposure of myofilaments to GlcNAc induced a significant increase in actin O-GlcNAcylation. This study provides the first identification of O-GlcNAcylation sites in cardiac myofilament proteins and demonstrates their potential role in regulating myocardial contractile function.
O-GlcNAc proteins:
Page 1 of 1