REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard M, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International journal of molecular sciences 2021 22(17) 34502162
Abstract:
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
O-GlcNAc proteins:
A0A096MJ01, A0A096MK30, A0A096MKD4, A0A096P6L8, A0A0G2JSH9, A0A0G2JSP8, A0A0G2JSR0, A0A0G2JSU7, A0A0G2JSW3, A0A0G2JTG7, A0A0G2JTP6, A0A0G2JUT0, A0A0G2JV65, A0A0G2JVG3, A0A0G2JVH4, A0A0G2JW41, A0A0G2JW94, A0A0G2JWK2, A0A0G2JWS2, A0A0G2JYK0, A0A0G2JZF0, A0A0G2K0F5, A0A0G2K3K2, A0A0G2K3Z9, A0A0G2K401, A0A0G2K477, A0A0G2K5I9, A0A0G2K5P5, A0A0G2K654, A0A0G2K719, A0A0G2K7F7, A0A0G2K8H0, A0A0G2K9P4, A0A0G2K9Q9, A0A0G2KAK2, A0A0G2KB63, A0A0H2UHM5, A0A0H2UHQ9, A0A0H2UHZ6, A0A0H2UI36, A0A0U1RRV7, ROA2, B0BNG3, CAH1, SCOT1, B2RYW3, C0JPT7, D3ZCV0, D3ZG43, D3ZIC4, D3ZQM0, D3ZUB0, D3ZZ68, D3ZZN3, D4A0T0, D4A5E5, D4A6Q4, SYNP2, D4A7X7, D4A8X8, D4AA63, D4ACC2, F1LM30, F1LM47, F1LMP9, F1LMV6, F1LP05, F1LP30, F1LSC3, F1LX07, F1LZW6, F1M3H8, F1M820, F1M865, F1M944, F1M953, F1MAA7, F1MAF7, G3V6E1, G3V6H0, G3V6H5, G3V6P7, G3V6S0, G3V6T7, G3V6Y6, G3V7C6, G3V7J0, G3V826, G3V885, G3V8B0, G3V8L3, G3V8V3, G3V9A3, G3V9U2, M0R5J4, M0R735, M0R757, M0R7S5, M0R9L0, PRDX6, C1QBP, HSPB2, ACOT2, HCD2, PARK7, MDHC, AATM, HBA, FIBG, GPX1, ROA1, MDHM, LDHA, PDIA1, G3P, GSTP1, ALDOA, EF2, AT1A1, BIP, RPN1, ODP2, MLRV, KCRS, HS71A, ATPB, CLH1, AT2A2, DMD, ALDH2, KPYM, AL1A7, ETFA, A1I3, CAH3, FIBB, ECHM, ACADL, PGAM2, MYL3, PGK1, ACLY, THIL, ACSL1, CPT2, CSK21, NDUV2, AT5F1, NDKB, NB5R3, IGG2A, IGG2B, LAC2, UCRI, SDHB, TNNI3, CRYAB, PPIB, PGAM1, RPN2, CAH2, TCPA, VIME, PEBP1, ATP5H, EZRI, QCR2, HS90B, 1433B, ATPG, CRIP2, RSSA, CAV1, LDHB, HSPB1, COF1, TERA, DPYL2, TPIS, DESM, ODPB, TNNT2, AL1A1, ES1, IDHP, MYPC, PSA6, ARF3, 1433G, 1433E, EF1A2, H4, RAN, RS3, AP2B1, RL40, HSP7C, CH60, PHB, ACTC, 1433T, TBA1A, 1433F, TBB5, NUP54, VDAC2, HS90A, EFTU, PNPH, HSPB6, PTBP1, H2B1, MUG1, ATPO, ANXA2, ADT2, K2C8, PRRC1, NIT2, Q498N4, ACSF2, H2A3, K2C6A, Q4G079, AGFG1, Q4PP99, Q4V8E1, EHD2, Q52KS1, NDUAA, Q5BJZ3, Q5D059, Q5M9H2, Q5RJN0, Q5RJR9, UBA1, Q5XFV4, LPP, Q5XI38, GDIR1, ODO1, TBA4A, Q5XIH3, ECHB, PDLI5, A1M, CPT1B, NDUS2, ECHA, ENPL, NDUS1, Q66HF3, MAVS, AMPL, ETFB, QCR1, K1C42, Q6IFU9, K1C14, K1C15, K1C13, K1C10, K2C75, K2C1, HNRPU, Q6IMZ3, TS101, RAB1A, PLAK, K2C5, DLDH, SYWC, TBA1B, Q6P9Y4, Q6PDV6, CNDP2, ROA3, CACP, DEST, Q7TQ70, CISY, Q91XN6, SDHA, IDH3A, ACON, AIFM1, MYG, TGM2, HCDH, VDAC1, SC31A
Download
Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Biochimica et biophysica acta 2009 1794(2) 19022411
Abstract:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a typical glycolytic enzyme comprised of four identical 37 kDa subunits. In addition to its glycolytic function, GAPDH has a number of biological functions which are related to its subcellular localization. Generally, protein O-linked N-acetylglucosamine modification (O-GlcNAcylation) is considered, among other effects, to mediate the nuclear transportation of cytosolic proteins. To elucidate the effect of O-GlcNAcylation on GAPDH, we determined the location of the O-GlcNAcylation site by tandem mass spectrometry, and subsequently examined the biological significance of this derivatization. The site involved was identified to be Thr227 by beta-elimination and Michael addition. Transient transfection assays demonstrated that the T227A mutation induced the cytoplasmic accumulation of GAPDH, whereas the wild type was present in the cytoplasm and nuclei. Structural modeling, mutagenesis of Thr227 to Lys and Arg, and gel filtration chromatography of mutated and wild type GAPDH, together suggested that O-GlcNAcylation at Thr227 interrupts the hydrophobic interfaces formed between GAPDH monomers in its tetrameric state. The present study identified Thr227 as the major GAPDH O-GlcNAcylation site, which suggests that this modification mediates the nuclear translocation of GAPDH, presumably by disrupting the conformation of tetrameric GAPDH.
O-GlcNAc proteins:
G3P, IF4G1
Download
Cieniewski-Bernard C, Bastide B, Lefebvre T, Lemoine J, Mounier Y, Michalski JC. Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Molecular & cellular proteomics : MCP 2004 3(6) 14985449
Abstract:
O-linked N-acetylglucosaminylation (O-GlcNAc) is a regulatory post-translational modification of nucleo-cytoplasmic proteins that has a complex interplay with phosphorylation. O-GlcNAc has been described as a nutritional sensor, the level of UDP-GlcNAc that serves as a donor for the uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetyl-glucosaminyltransferase being regulated by the cellular fate of glucose. Because muscular contraction is both dependent on glucose metabolism and is highly regulated by phosphorylation/dephosphorylation processes, we decided to investigate the identification of O-GlcNAc-modified proteins in skeletal muscle using a proteomic approach. Fourteen proteins were identified as being O-GlcNAc modified. These proteins can be classified in three main classes: i) proteins implicated in the signal transduction and in the translocation between the cytoplasm and the nucleus or structural proteins, ii) proteins of the glycolytic pathway and energetic metabolism, and iii) contractile proteins (myosin heavy chain). A decrease in the O-GlcNAc level was measured in the slow postural soleus muscle after 14-day hindlimb unloading, a model of functional atrophy characterized by a decrease in the force of contraction. These results strongly suggest that O-GlcNAc modification may serve as an important regulation system in skeletal muscle physiology.
O-GlcNAc proteins:
KCRM, ALDOA, MDHM, G3P, SPA3N, CAH3, ENOB, CRYAB, DKC1, MK08, P85A, 2A5B
Download
Page 1 of 1