REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (6 results)


Tsukamoto Y, Tsukamoto N, Saiki W, Tashima Y, Furukawa JI, Kizuka Y, Narimatsu Y, Clausen H, Takeuchi H, Okajima T. Characterization of galactosyltransferase and sialyltransferase genes mediating the elongation of the extracellular O-GlcNAc glycans. Biochemical and biophysical research communications 2024 703 38359610
Abstract:
O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, β4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.
O-GlcNAc proteins:
EGF, EGF, NOTCH, NOTC1, NOTC1
Ogawa M, Senoo Y, Ikeda K, Takeuchi H, Okajima T. Structural Divergence in O-GlcNAc Glycans Displayed on Epidermal Growth Factor-like Repeats of Mammalian Notch1. Molecules (Basel, Switzerland) 2018 23(7) 30018219
Abstract:
Extracellular O-GlcNAc is a novel class of modification catalyzed by epidermal growth factor-like (EGF)-domain specific O-GlcNAc transferase (EOGT). In mammals, EOGT is required for ligand-mediated Notch signaling for vascular development. Previous studies have revealed that O-GlcNAc in mammalian cultured cells is subject to subsequent glycosylation, which may impose additional layers of regulation. This study aimed to analyze the O-GlcNAc glycans of Drosophila EGF20 as model substrates and mouse Notch1 EGF repeats by mass-spectrometry. The analysis of Drosophila EGF20 expressed in HEK293T cells revealed that the majority of the proteins are modified with an elongated form of O-GlcNAc glycan comprising terminal galactose or sialic acid residues. In contrast, recombinant Notch1 EGF repeats isolated from HEK293T cells revealed structural divergence of O-GlcNAc glycans among the different EGF domains. Although the majority of Notch1 EGF2 and EGF20 domains contained the extended forms of the glycan, the O-GlcNAc in many other domains mostly existed as a monosaccharide irrespective of the exogenous EOGT expression. Our results raised a hypothesis that an array of O-GlcNAc monosaccharides may impact the structure and function of Notch receptors.
O-GlcNAc proteins:
NOTCH