REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (6 results)


Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. Journal of neurochemistry 2018 147(2) 29808487
Abstract:
In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible, and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning, and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and post-synaptic levels, characterized by a reduction in phosphorylation (synapsin1, α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors (AMPAR) GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of O-GlcNAc transferase/O-GlcNAcase enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect pre-synaptic neurotransmitter release. Associated with other pre- and post-synaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, phosphorylation/O-GlcNAcylation interplay appears to be involved in synaptic plasticity by finely regulating neural activity.
O-GlcNAc proteins:
SYN1, KCC2A
Download
Skorobogatko Y, Landicho A, Chalkley RJ, Kossenkov AV, Gallo G, Vosseller K. O-linked β-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. The Journal of biological chemistry 2014 289(6) 24280219
Abstract:
O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca(2+)/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation.
O-GlcNAc proteins:
SYN1, SYN1, SYN1
Rexach JE, Rogers CJ, Yu SH, Tao J, Sun YE, Hsieh-Wilson LC. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nature chemical biology 2010 6(9) 20657584
Abstract:
Mechanistic studies of O-GlcNAc glycosylation have been limited by an inability to monitor the glycosylation stoichiometries of proteins obtained from cells. Here we describe a powerful method to visualize the O-GlcNAc-modified protein subpopulation using resolvable polyethylene glycol mass tags. This approach enables rapid quantification of in vivo glycosylation levels on endogenous proteins without the need for protein purification, advanced instrumentation or expensive radiolabels. In addition, it establishes the glycosylation state (for example, mono-, di-, tri-) of proteins, providing information regarding overall O-GlcNAc site occupancy that cannot be obtained using mass spectrometry. Finally, we apply this strategy to rapidly assess the complex interplay between glycosylation and phosphorylation and discover an unexpected reverse 'yin-yang' relationship on the transcriptional repressor MeCP2 that was undetectable by traditional methods. We anticipate that this mass-tagging strategy will advance our understanding of O-GlcNAc glycosylation, as well as other post-translational modifications and poorly understood glycosylation motifs.
O-GlcNAc proteins:
SP1, SYN1, CREB1, NUP62, MECP2, SYN2, OGA, GORS2
Download
Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. Journal of the American Chemical Society 2008 130(35) 18683930
Abstract:
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide-alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc.
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Molecular & cellular proteomics : MCP 2002 1(10) 12438562
Abstract:
Identifying sites of post-translational modifications on proteins is a major challenge in proteomics. O-Linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic modification more analogous to phosphorylation than to classical complex O-glycosylation. We describe a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild beta-elimination followed by Michael addition with dithiothreitol (BEMAD). Using synthetic peptides, we also show that biotin pentylamine can replace dithiothreitol as the nucleophile. The modified peptides can be efficiently enriched by affinity chromatography, and the sites can be mapped using tandem mass spectrometry. This same methodology can be applied to mapping sites of serine and threonine phosphorylation, and we provide a strategy that uses modification-specific antibodies and enzymes to discriminate between the two post-translational modifications. The BEMAD methodology was validated by mapping three previously identified O-GlcNAc sites, as well as three novel sites, on Synapsin I purified from rat brain. BEMAD was then used on a purified nuclear pore complex preparation to map novel sites of O-GlcNAc modification on the Lamin B receptor and the nucleoporin Nup155. This method is amenable for performing quantitative mass spectrometry and can also be adapted to quantify cysteine residues. In addition, our studies emphasize the importance of distinguishing between O-phosphate versus O-GlcNAc when mapping sites of serine and threonine post-translational modification using beta-elimination/Michael addition methods.
O-GlcNAc proteins:
SYN1, NU155, LBR
Download
Cole RN, Hart GW. Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. Journal of neurochemistry 1999 73(1) 10386995
Abstract:
Synapsin I is concentrated in nerve terminals, where it appears to anchor synaptic vesicles to the cytoskeleton and thereby ensures a steady supply of fusion-competent synaptic vesicles. Although phosphorylation-dependent binding of synapsin I to cytoskeletal elements and synaptic vesicles is well characterized, little is known about synapsin I's O-linked N-acetylglucosamine (O-GlcNAc) modifications. Here, we identified seven in vivo O-GlcNAcylation sites on synapsin I by analysis of HPLC-purified digests of rat brain synapsin I. The seven O-GlcNAcylation sites (Ser55, Thr56, Thr87, Ser516, Thr524, Thr562, and Ser576) in synapsin I are clustered around its five phosphorylation sites in domains B and D. The proximity of phosphorylation sites to O-GlcNAcylation sites in the regulatory domains of synapsin I suggests that O-GlcNAcylation may modulate phosphorylation and indirectly affect synapsin I interactions. With use of synthetic peptides, however, the presence of an O-GlcNAc at sites Thr562 and Ser576 resulted in only a 66% increase in the Km of calcium/calmodulin-dependent protein kinase II phosphorylation of site Ser566 with no effect on its Vmax. We conclude that O-GlcNAcylation likely plays a more direct role in synapsin I interactions than simply modulating the protein's phosphorylation.
O-GlcNAc proteins:
SYN1
Download
Page 1 of 1