REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (7 results)


Liu Y, Ren Y, Cao Y, Huang H, Wu Q, Li W, Wu S, Zhang J. Discovery of a Low Toxicity O-GlcNAc Transferase (OGT) Inhibitor by Structure-based Virtual Screening of Natural Products. Scientific reports 2017 7(1) 28951553
Abstract:
O-GlcNAc transferase (OGT) plays an important role in regulating numerous cellular processes through reversible post-translational modification of nuclear and cytoplasmic proteins. However, the function of O-GlcNAcylation is still not well understood. Cell permeable OGT inhibitors are needed to manipulate O-GlcNAcylation levels and clarify the regulatory mechanism of this modification. Here, we report a specific natural-product OGT inhibitor (L01), which was identified from a structure-based virtual screening analysis. L01 inhibited O-GlcNAcylation both in vitro and in cells without significantly altering cell surface glycans. Molecular dynamics and site-directed mutagenesis indicated a new binding mechanism in which L01 could interact with Asn557 near the UDP binding pocket of OGT. This residue may contribute to the specificity of L01. Furthermore, as a specific OGT inhibitor, L01 produced low toxicity in cellular and zebrafish models. The identification of L01 validates structure-based virtual screening approaches for the discovery of OGT inhibitors. L01 can also serve as a chemical tool to further characterize O-GlcNAcylation functions or a new molecular core for structure-activity relationship studies to optimize the biochemical potencies.
O-GlcNAc proteins:
NUP62
Download
Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. The Journal of biological chemistry 2012 287(19) 22311971
Abstract:
Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-D-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for k(cat)/K(m) values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 μM to over 20 μM), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of k(cat)/K(m) values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity.
O-GlcNAc proteins:
TAU, NUP62, TAB1, KCC4, CARM1
Download
Rexach JE, Rogers CJ, Yu SH, Tao J, Sun YE, Hsieh-Wilson LC. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nature chemical biology 2010 6(9) 20657584
Abstract:
Mechanistic studies of O-GlcNAc glycosylation have been limited by an inability to monitor the glycosylation stoichiometries of proteins obtained from cells. Here we describe a powerful method to visualize the O-GlcNAc-modified protein subpopulation using resolvable polyethylene glycol mass tags. This approach enables rapid quantification of in vivo glycosylation levels on endogenous proteins without the need for protein purification, advanced instrumentation or expensive radiolabels. In addition, it establishes the glycosylation state (for example, mono-, di-, tri-) of proteins, providing information regarding overall O-GlcNAc site occupancy that cannot be obtained using mass spectrometry. Finally, we apply this strategy to rapidly assess the complex interplay between glycosylation and phosphorylation and discover an unexpected reverse 'yin-yang' relationship on the transcriptional repressor MeCP2 that was undetectable by traditional methods. We anticipate that this mass-tagging strategy will advance our understanding of O-GlcNAc glycosylation, as well as other post-translational modifications and poorly understood glycosylation motifs.
O-GlcNAc proteins:
SP1, SYN1, CREB1, NUP62, MECP2, SYN2, OGA, GORS2
Download
Sohn KC, Do SI. Transcriptional regulation and O-GlcNAcylation activity of zebrafish OGT during embryogenesis. Biochemical and biophysical research communications 2005 337(1) 16188232
Abstract:
Zebrafish OGT (zOGT) sequence was identified in zebrafish (Danio rerio) genome and six different transcriptional variants of zOGT, designated var1 to var6, were isolated. Here we describe the developmental regulation of zOGT variants at transcriptional level and characterization of their OGT activities of protein O-GlcNAcylation. OGT transcriptional variants in zebrafish were differentially generated by alternative splicing and in particular, var1 and var2 were contained by 48 bp intron as a novel exon sequence, demonstrating that this form of OGT was not found in mammals. Transcript analysis revealed that var1 and var2 were highly expressed at early phase of development including unfertilized egg until dome stage whereas var3 and var4 were begins to be expressed at sphere stage until late phase of development. Our data indicate that var1 and var2 are likely to be maternal transcripts. The protein expression assay in Escherichia coli-p62 system showed that OGT activities of var3 and var4 were found to be only active whereas those of other variants were inactive.
O-GlcNAc proteins:
NUP62
Download
Miller MW, Caracciolo MR, Berlin WK, Hanover JA. Phosphorylation and glycosylation of nucleoporins. Archives of biochemistry and biophysics 1999 367(1) 10375398
Abstract:
The nuclear pore complex mediates macromolecular transport between the nucleus and cytoplasm. Many nuclear pore components (nucleoporins) are modified by both phosphate and O-linked N-acetylglucosamine (O-GlcNAc). Among its many functions, protein phosphorylation plays essential roles in cell cycle progression. The role of O-GlcNAc addition is unknown. Here, levels of nucleoporin phosphorylation and glycosylation during cell cycle progression are examined. Whereas nuclear pore glycoproteins are phosphorylated in a cell-cycle-dependent manner, levels of O-GlcNAc remain constant. The major nucleoporin p62 can be phosphorylated in vitro by protein kinase A and glycogen synthase kinase (GSK)-3alpha but not by cyclin B/cdc2 or GSK-3beta. The consensus sites of these kinases resemble sites which can be glycosylated by O-GlcNAc transferase. These data are consistent with a model that O-GlcNAc limits nucleoporin hyperphosphorylation during M-phase and hastens the resumption of regulated nuclear transport at the completion of cell division.
O-GlcNAc proteins:
NUP62
Download
Lubas WA, Smith M, Starr CM, Hanover JA. Analysis of nuclear pore protein p62 glycosylation. Biochemistry 1995 34(5) 7849028
Abstract:
Glycoprotein components of the nuclear pore are essential for nuclear transport and are modified by both glycosylation and phosphorylation. The function and control of these post-translational modifications are poorly understood. Glycosylation of the major rat nuclear pore glycoprotein, p62, was examined in vitro using recombinant p62 as a substrate. Rat p62 was expressed in Escherichia coli and purified to near homogeneity. Kinetic analysis using a partially purified mammalian transferase suggests that the recombinant protein is an excellent substrate (Km = 0.30 microM) for the transfer of GlcNAc from UDP-GlcNAc (Km = 1.8 microM). Localization of the sites of O-linked GlcNAc glycosylation of rat p62 was performed by a combination of deletion analysis of in vitro translation products and by immunoprecipitation of [14C]GlcNAc-labeled proteolytic fragments. The amino terminus of rat p62 is poorly glycosylated with no O-linked GlcNAc sites between Lys22 and Lys97; the carboxyl terminus has one known glycosylation site at Ser471. The majority of the glycosylation sites in rat p62 are likely to occur on the six clustered Ser residues in the central Ser/Thr-rich region from Ser270 to Thr294. A synthetic peptide derived from this region is a good substrate for O-GlcNAc addition (Km = 30 microM) and a potent competitive inhibitor of p62 glycosylation (Ki = 15 microM). It is proposed that this Ser/Thr-rich domain functions as a linker region between the amino-terminal beta-pleated sheet and the carboxyl terminal alpha-helical domains. O-Glycosylation and phosphorylation of this linker region could provide a dynamic means of altering the conformation of p62 during nuclear pore assembly and disassembly.
O-GlcNAc proteins:
NUP62
Download
D'Onofrio M, Starr CM, Park MK, Holt GD, Haltiwanger RS, Hart GW, Hanover JA. Partial cDNA sequence encoding a nuclear pore protein modified by O-linked N-acetylglucosamine. Proceedings of the National Academy of Sciences of the United States of America 1988 85(24) 3200844
Abstract:
The nuclear pore complex contains a family of proteins ranging in molecular mass from 35 to 220 kDa that are glycosylated with O-linked N-acetylglucosamine (GlcNAc) residues. We sought to determine the primary sequence of a nuclear pore protein modified by O-linked GlcNAc. The major (62 kDa) nuclear pore glycoprotein (np62) was purified from rat liver nuclear envelopes by immunoaffinity chromatography and preparative gel electrophoresis. After CNBr fragmentation, a glycopeptide was isolated and microsequenced. An oligonucleotide probe based on this sequence information was used to screen a lambda gt11 cDNA library constructed from poly(A) mRNA of the rat thyroid cell line FRTL-5. A clone (B5) was isolated and shown to hybridize to a single 2.5-kilobase species in poly(A) mRNA from rat liver and FRTL-5. This insert was sequenced and found to contain a 691-base-pair cDNA encoding a 155-amino acid open reading frame. This open reading frame contained a CNBr fragment identical to the original glycopeptide sequence and a second CNBr fragment corresponding to a nonglycosylated peptide that was also isolated from the purified pore glycoprotein. The B5 cDNA produced a beta-galactosidase fusion protein of the size predicted by the open reading frame. Analysis of the residues making up a presumptive glycosylation site suggests that the sequence is unlike any known sites for enzymatic N- or O-linked glycosylation. The partial sequence of the 62-kDa nuclear pore glycoprotein shows little similarity to other characterized proteins and elucidates structural features of a member of the family of nuclear pore glycoproteins.
O-GlcNAc proteins:
NUP62
Download
Page 1 of 1