REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Luo Y, Wang Y, Tian Y, Zhou H, Wen L. "Two Birds One Stone" Strategy for the Site-Specific Analysis of Core Fucosylation and O-GlcNAcylation. Journal of the American Chemical Society 2023 37340703
Abstract:
Core fucosylation and O-GlcNAcylation are the two most famous protein glycosylation modifications that regulate diverse physiological and pathological processes in living organisms. Here, a "two birds one stone" strategy has been described for the site-specific analysis of core fucosylation and O-GlcNAcylation. Taking advantage of two mutant endoglycosidases (EndoF3-D165A and EndoCC-N180H), which efficiently and specifically recognize core fucose and O-GlcNAc, glycopeptides can be labeled using a biantennary N-glycan probe bearing azido and oxazoline groups. Then, a temperature-sensitive poly(N-isopropylacrylamide) polymer functionalized with dibenzocyclooctyne was introduced to facilitate the enrichment of the labeled glycopeptides from the complex mixture. The captured glycopeptides can be further released enzymatically by wild-type endoglycosidases (EndoF3 and EndoCC) in a traceless manner for mass spectrometry (MS) analysis. The described strategy allows simultaneous profiling of core-fucosylated glycoproteome and O-GlcNAcylated glycoproteome from one complex sample by MS technology and searching the database using different variable modifications.
O-GlcNAc proteins:
LCE6A, RBM47, HFM1, SMCO3, SBNO1, ODAD3, CNOT1, RCCD1, GLTD2, AGAP5, CX049, PDLI1, TAF4, ABLM1, DVL1, HGS, SC16A, NPC1, LAMA5, TET3, IF4G3, E41L2, AKAP8, PLIN3, MAFK, OPHN1, MITF, OBSL1, ANR17, ENTP6, NCOR1, ERLN1, JERKY, MYCB2, WDHD1, CBPD, TOX4, AGFG2, SC24B, PCNT, BAG3, DDAH2, CLPT1, AACT, LMNA, FINC, FETUA, GCR, KITH, HSPB1, RPN1, RLA2, ITB1, K1C18, ENOA, CATD, TBB5, TACD2, LYAG, BIP, LAMC1, HSP7C, DMD, MPRI, SKI, GILT, GLU2B, ENPL, RSMB, PO2F1, PVR, ZEP1, DPEP1, CBPE, ATF7, SON, ATF1, ITIH2, FST, ICAL, FGF7, CD9, CBL, ITA6, PTPRB, COF1, GATA3, PSA4, PEBP1, CLIP1, ZEP2, GLPK, ELF1, CD68, GPC1, HRH1, IRS1, NU214, SRP14, NUP62, ETFB, LICH, TXLNA, STAT3, MATR3, SSRA, GATA4, MMP13, 5HT3A, NOTC1, YAP1, RFX5, FAS, CDK8, CENPF, NU153, SEPP1, EMD, BCAM, HCFC1, SPHM, ARSD, AGFG1, NUP98, PTTG, RAD, AF17, DSRAD, ITA1, IF6, STAR6, ACTB, HNRPK, H4, RL40, CXAR, GPC5, FOXK1, PGBM, SPTB2, FOXK2, IF4G1, NOTC2, TLE3, PTN12, MTG8, ZO1, LRP1, RGS1, CD47, EP300, AHNK, TROAP, BPTF, NFIA, HYAL2, LMAN2, FOXC1, MB211, OS9, TUSC3, ROCK1, ASAH1, RIPK1, ASPP2, CDK13, SCRB2, VEZF1, DSG2, UBP2L, GIT2, PUM1, RRP1B, NCOA6, MEF2D, CHD4, NUMA1, R3HD1, RCN1, RBMS2, TAF1C, SF01, JHD2C, ELF2, TAB1, HERC1, ZFHX3, ZYX, ADRM1, CCDC6, SNPC1, MA2A1, YC018, QSER1, AAK1, P3H1, GNPTA, RABL6, TB10B, LUZP6, PRC2B, WIPI1, DCA10, HP1B3, ZN362, ZEP3, ZC3HD, UBR4, RHG21, UBAP2, RPRD2, DNAI4, TASO2, RN123, PCX4, ARID2, FTM, BICRL, SCAR3, GRHL2, NIPBL, LIN54, NFRKB, ZC3HE, LCN15, CREL2, IGS10, GGYF2, NBEL2, SRCAP, K0408, UBN2, BACHL, KDM3B, PARPT, RGPD4, POGZ, MAVS, EMSY, RAI1, I2BP2, ABCAC, ZFHX4, LUZP1, FRAS1, RB6I2, AHNK2, S22A9, TEX2, MGAP, SULF2, ANKH1, SUGP1, HYCC2, MILK2, CC116, PHAR4, K319L, ASPM, RPTOR, SYNPO, GALT4, MFSD9, SLAI1, CC168, TNR6A, PHC3, VP37A, SYNE1, PLBL2, TIP, CC110, TEX47, TBC15, STT3B, SPP2B, MAGC3, DYH5, PO210, GEMI5, PIGO, F222B, F151A, LMO7, P66B, MYO3B, GBF1, NICA, TM131, ZN592, LAR4B, GSLG1, GPKOW, LPP, TTC28, PF21A, RBM33, GWL, TONSL, PDLI5, VCIP1, ZFR, EP400, CH048, CI072, NOL4L, RBM14, GBP4, CDK15, PHF12, CIC, MED15, G3ST4, FNBP1, MINT, HTF4, EYA3, ARI3A, H2A1J, GDF15, DPH2, BCL7B, TM2D3, PELO, DIDO1, TRAIP, RBM4, CLC7A, UBE2O, PEG3, SP130, BRD8, I2BPL, EPC1, ADNP, RM46, NELFA, WNK1, ZHX3, SDS3, MLXIP, RC3H2, MUC5B, TANC2, CHD8, CELR2, APMAP, PDLI7, RBM12, STAU2, GPTC2, TAB2, CDK12, PTTG3, FLRT1, CRIM1, DAPLE, IBTK, RBM27, KANL3, RERE, SE1L1, LIMD1, TCF20, DPP2, BAP29, S30BP, LCAP, BTNL2, SIX4, POMT2, INT6, MRTFB, NOTC3, ATS5, BSN, SCAF8, ANR26, SHAN2, SRRM2, CTND2, SCML2, ZN652, ZN281, STRAP, VPP2, PRC2C, NCOR2, DC1L1, STON1, S23IP
Species: Homo sapiens
Download
Xu S, Sun F, Wu R. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Analytical chemistry 2020 92(14) 32574038
Abstract:
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.