REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (29 results)


Fan Z, Li J, Liu T, Zhang Z, Qin W, Qian X. A new tandem enrichment strategy for the simultaneous profiling of O-GlcNAcylation and phosphorylation in RNA-binding proteome. The Analyst 2021 146(4) 33465208
Abstract:
RNA-protein interactions play important roles in almost every step of the lifetime of RNAs, such as RNA splicing, transporting, localization, translation and degradation. Post-translational modifications, such as O-GlcNAcylation and phosphorylation, and their "cross-talk" (OPCT) are essential to the activity and function regulation of RNA-binding proteins (RBPs). However, due to the extremely low abundance of O-GlcNAcylation and the lack of RBP-targeted enrichment strategies, large-scale simultaneous profiling of O-GlcNAcylation and phosphorylation on RBPs is still a challenging task. In the present study, we developed a tandem enrichment strategy combining metabolic labeling-based RNA tagging for selective purification of RBPs and HILIC-based enrichment for simultaneous O-GlcNAcylation and phosphorylation profiling. Benefiting from the sequence-independent RNA tagging by ethynyluridine (EU) labeling, 1115 RBPs binding to different types of RNAs were successfully enriched and identified by quantitative mass spectrometry (MS) analysis. Further HILIC enrichment on the tryptic-digested RBPs and MS analysis led to the first large-scale identification of O-GlcNAcylation and phosphorylation in the RNA-binding proteome, with 461 O-GlcNAc peptides corresponding to 300 RBPs and 671 phosphopeptides corresponding to 389 RBPs. Interestingly, ∼25% RBPs modified by two PTMs were found to be related to multiple metabolism pathways. This strategy has the advantage of high compatibility with MS and provides peptide-level evidence for the identification of O-GlcNAcylated RBPs. We expect it will support simultaneous mapping of O-GlcNAcylation and phosphorylation on RBPs and facilitate further elucidation of the crucial roles of OPCT in the function regulation of RBPs.
O-GlcNAc proteins:
NACAM, SAP18, PLOD2, NOP56, DDX3X, PLXB2, RRP8, SERA, PSMD3, MCA3, PRPF3, TPD54, TIM44, ACTN4, ACSL4, PLOD3, IF2P, ZC11A, SC22B, PR40A, MPPB, CSDE1, U520, NU155, EIF3G, SPF27, RL1D1, CLPX, RTN3, LC7L3, VAPB, SMC2, AP2A1, WIZ, BAG2, TOM40, ACL6A, EGFR, LMNA, TFR1, FRIH, RPN1, RPN2, ITB1, SYEP, HNRPC, SRPRA, VIME, GNAI3, ANXA5, LAMP1, ACADM, TOP1, TOP2A, PABP1, ADT3, TPR, EF2, PDIA4, FPPS, ENPL, ALDR, NDKA, RS2, UBF1, ARF4, NUCL, RAB6A, PSB1, FLNA, SDHB, UBA1, NDKB, ITA6, SFPQ, AT2B4, THIL, RS12, PSA4, SYVC, 1433T, MAP4, PSA5, PSB4, NDUS1, ECHM, KCY, AMRP, SDHA, METK2, CPSM, PUR9, HNRH1, 1433S, STIP1, P5CR1, MCM4, HSP74, CTNA1, MYH9, DEK, RL4, SPB5, NUP62, RBMX, TCPZ, ECE1, PRS6B, KI67, RAGP1, ATRX, SYQ, LMAN1, NASP, FAS, AL7A1, SYSC, MCM2, ACADV, NU153, RBP2, DNLI3, MRE11, CPT1A, F10A1, TCPD, RAB7A, IDH3G, HCFC1, DHB4, HDGF, ROA3, 6PGD, NUP98, ACLY, TCP4, SYYC, UBP14, SNAA, IF5, TERA, DSRAD, TPD52, EIF3B, NU107, EPIPL, SC61B, SRP54, B2MG, SMD2, RL23A, YBOX1, NOP14, IF4G2, GTF2I, NUCB2, RT22, HMGN5, RBM10, TFAM, CLH1, SPTB2, SET, CAP1, EXOSX, EWS, ODO1, RL18A, NUCB1, M2OM, LMNB2, SRS11, CALD1, RL18, C1QBP, CKAP4, KHDR1, DHX9, GOGA2, SSRP1, AHNK, AIMP1, ILF3, SRSF5, SRSF6, TIF1B, TCOF, PICAL, SNW1, TRI29, EIF3A, MLEC, CAPR1, SMC1A, RRP1B, GANAB, NUMA1, U5S1, RRS1, ACOX1, PLEC, RNPS1, PUM3, RB11B, SEPT7, DDB1, CDC37, SRSF7, PCKGM, HNRL2, INF2, PDS5A, PREP, RRP12, TOIP1, HP1B3, RBM26, BRE1A, CDKAL, PRP8, ZC3HE, QSOX2, IKIP, TM10C, EIF3M, PABP2, KTN1, CAND1, THOC6, P66A, MISP, CCAR1, PELP1, NDUF2, RM50, PAF1, TXND5, TOIP2, THOC2, TM263, NU133, PDC6I, SCFD1, LMO7, ELYS, RT27, HS105, NU205, RAD50, SMRC1, TNPO1, FUBP1, P5CR2, DNJA3, PTCD3, DDX27, EFGM, IWS1, NIBA2, YMEL1, PSMD1, EIF3C, ROAA, CMS1, MBB1A, GNL3, PDIP3, PININ, ACAD9, SFXN1, CYBP, RM47, RTN4, DDX21, AAAS, CARF, AATF, BCLF1, MYOF, SYLC, NXF1, SEC63, LIMA1, SEPT9, KAD3, RCOR1, ACINU, TMCO1, PPIE, PA2G4, RUVB2, TR150, RT23, CHTOP, TLN1, HYOU1, SAM50, SP16H, UTP18, SRPRB
Species: Homo sapiens
Download
Ge Y, Ramirez DH, Yang B, D'Souza AK, Aonbangkhen C, Wong S, Woo CM. Target protein deglycosylation in living cells by a nanobody-fused split O-GlcNAcase. Nature chemical biology 2021 17(5) 33686291
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification that is presented on thousands of nucleocytoplasmic proteins. Interrogating the role of O-GlcNAc on a single target protein is crucial, yet challenging to perform in cells. Herein, we developed a nanobody-fused split O-GlcNAcase (OGA) as an O-GlcNAc eraser for selective deglycosylation of a target protein in cells. After systematic cellular optimization, we identified a split OGA with reduced inherent deglycosidase activity that selectively removed O-GlcNAc from the desired target protein when directed by a nanobody. We demonstrate the generality of the nanobody-fused split OGA using four nanobodies against five target proteins and use the system to study the impact of O-GlcNAc on the transcription factors c-Jun and c-Fos. The nanobody-directed O-GlcNAc eraser provides a new strategy for the functional evaluation and engineering of O-GlcNAc via the selective removal of O-GlcNAc from individual proteins directly in cells.
O-GlcNAc proteins:
JUN, SP1, JUNB, NUP62
Species: Homo sapiens
Download
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O'Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS chemical biology 2020 15(4) 32119511
Abstract:
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.
O-GlcNAc proteins:
SBNO1, CNOT1, P121C, DX39A, GTPB1, AP3B1, PGRC1, TAF4, EIF3F, IPO5, IF2B3, NOP56, DDX3X, ARI1A, IRS4, ANM5, TCRG1, PSA7, HGS, MYPT1, HNRDL, XPO1, SET1A, PUR4, NPC1, TIF1A, NKRF, OGT1, PPM1G, EIF3D, EIF3H, DHX15, SERA, HNRPR, IF4G3, E41L2, ZN207, BUB3, ACTN4, HTSF1, AP1G1, SYNC, AKAP8, CALU, SMCA5, JIP4, OGA, HNRPQ, DIAP1, TSN3, SNX2, DKC1, CLAP2, CPNE3, PHF2, ANR17, H2AY, FLNB, NCOR1, CISY, PR40A, SF3B1, CSDE1, U520, EIF3G, PRAF3, SRP72, MTA2, TOX4, SC24D, SC31A, SCAF4, ZRAB2, LC7L3, VAPB, IPO7, SC24B, ACSL3, AP2A1, AIFM1, LDHA, COX2, HPRT, AATM, PGK1, LMNA, TFR1, ALDOA, OAT, G3P, RPN1, RPN2, AT1A1, ADT2, PCCA, IF2A, RLA0, ITB1, ATPB, ENOA, PYGL, G6PI, NPM, LDHB, PDIA1, H10, TBB5, HEXB, PROF1, SYEP, HS90A, HNRPC, 4F2, HS90B, ASNS, ODPA, RU17, RSSA, SNRPA, GSTP1, HMGB1, DLDH, ROA1, PARP1, LKHA4, HS71B, H14, ODP2, THIO, CH60, BIP, HSP7C, EPB41, ODPB, LAMP1, ACADM, TOP1, TOP2A, PYC, C1TC, MPRI, PRPS2, PABP1, PCNA, HARS1, IMDH2, TPR, KCRB, XRCC6, XRCC5, EF2, PDIA4, PLST, GLU2B, KPYM, ENPL, PO2F1, HNRPL, SYDC, PLAK, ALDR, EZRI, GNS, RS2, CREB1, H12, AT2A2, JUNB, PYRG1, DDX5, PRS6A, TCPA, RL35A, RL7, VINC, SON, RCC1, NUCL, HXK1, E2AK2, SPEE, IF2B, ANXA7, LMNB1, FLNA, VDAC1, FBRL, PUR2, PUR6, UBA1, NDKB, ROA2, RFX1, TCEA1, SFPQ, PPIB, RS3, NFYA, SAHH, COF1, IF4B, EF1B, MCM3, BRD2, ATPA, PSA1, PSA3, PSA4, PAX6, U2AF2, RL13, PTBP1, SYTC, SYVC, EF1G, RFA1, APEX1, PYR1, CALR, MAP4, CALX, PSB5, TKT, PRDX6, PRDX5, PRDX3, RL12, PEBP1, PDIA3, 2AAA, CDC27, AMRP, SDHA, QCR1, PUR9, HNRH1, STIP1, PRDX2, RL9, CSTF2, MCM4, MCM5, MCM7, GLYM, HSP74, PHB, MYH9, COPB2, ADDA, BASI, FUS, NU214, DEK, MP2K2, ATPG, RL4, SRP14, NUP62, RBMX, GRP75, IF4A3, RS19, RL3, TXLNA, TCPZ, MDHC, MDHM, ECHA, IF2G, GARS, SYIC, LAP2A, LAP2B, MTREX, RS27, LPPRC, MATR3, RANG, VDAC2, UBP5, KI67, RAGP1, NOP2, CRKL, BAG6, RL27A, RL5, RL21, RL28, RS9, STT3A, COPD, PRC2A, TCPE, AL9A1, RL34, NASP, FAS, TCPG, EFTU, SYAC, SYSC, PSB3, MCM2, YLPM1, TMEDA, RBM25, NU153, RBP2, GSK3A, TAF6, GUAA, MRE11, GDIB, EMD, F10A1, LRBA, RL14, TCPQ, TCPD, ANX11, PAPOA, RAB7A, SMCA4, HCFC1, DHB4, ROA3, 6PGD, HNRPM, IMA1, AGFG1, HNRPF, MSH6, RBM5, NUP98, ACLY, COPB, COPA, MOT1, SC24C, SYRC, SYYC, AT1B3, RD23B, P5CS, IF5, XPO2, TERA, AFAD, DSRAD, PSA, SYMC, CTBP2, NU107, TPIS, ACTB, IF4A1, PSA6, ARF3, ABCE1, RAP1B, RS3A, RL26, RL15, S61A1, HNRPK, RS7, RS8, 1433E, RS14, RS23, RS11, SMD1, RL7A, RS4X, H4, RAN, RL23, GBB2, RL10A, RL11, RL8, PPIA, RL40, TRA2B, AP2B1, IF5A1, RACK1, YBOX1, EF1A1, TBB4B, CSK21, IF4G2, GTF2I, TCPB, PRKDC, RL24, RL19, SRSF3, FOXK1, RBM10, MPCP, CLH1, HNRPU, SPTB2, FOXK2, CAP1, LAT1, EXOSX, EWS, RL18A, FKBP4, RL6, TOP2B, KMT2A, LMNB2, TF65, IF4G1, TLE3, SRS11, PUR1, SUH, GABPA, PRDX1, RL18, C1QBP, KHDR1, SRSF1, DHX9, CD47, SSRP1, RBBP4, AHNK, AP1B1, NU160, BPTF, TP53B, AIMP1, ILF2, ILF3, LMAN2, TRAP1, PP1R8, ACACA, ROA0, PRDX4, CBX3, PSMD2, SRSF6, TIF1B, PTK7, PABP4, EIF3I, TCOF, SF3B2, TMED1, PICAL, RIPK1, HDAC1, CUL4B, CD166, IDI1, NFYC, CKAP5, HNRPD, SCRB2, DSG2, EIF3A, UBP2L, SCRIB, TTL12, DCTN1, DYHC1, SRC8, CAPR1, RBM39, MCM6, MDC1, EPN4, SMC1A, RRP1B, UBP10, GANAB, LBR, ZN638, IMB1, NUMA1, SEPT2, SART3, U5S1, SYK, BRD3, PDIA6, IPYR, TEBP, NONO, PWP2, RCN1, PCBP1, PCBP2, SF3B3, SAFB1, SF3A1, NCOA2, SF01, MARE1, NSDHL, TAB1, AAAT, VAS1, ZYX, CCDC6, PKN2, DDB1, CDC37, SRSF7, CPSF6, NRF1, H31T, QSER1, QRIC1, P3H1, TB10B, AMOT, DHB12, PRC2B, H2B2F, HP1B3, CE170, ZC3HD, RBM26, RIF1, RPRD2, ZN318, ECM29, ZMYM4, MAP1S, LIN54, EDC4, PRP8, SCYL2, NFRKB, ZC3HE, LARP1, FIP1, MCAF1, GGYF2, SPT6H, SND1, DHX30, KDM3B, ZCCHV, NUP54, POGZ, NUFP2, MAVS, I2BP2, RBBP6, HUWE1, YTHD3, CENPV, LYRIC, ZN598, GP180, CAND1, CARM1, DDX42, P66A, ARI3B, MGAP, PHF6, CHERP, ANKH1, SUGP1, CCAR1, SPB1, PHAR4, SPART, CCAR2, NUP93, S11IP, FNBP4, CPSF7, ARFG1, ENAH, AFG2H, TXND5, LS14A, Z280C, TNR6A, SMRC2, TBC15, PNPT1, HM13, PO210, GEMI5, ZN384, SMAP2, NU133, PDC6I, PCNP, CKAP2, ATX2L, P66B, ELYS, DDX1, GBF1, NICA, UBXN4, HS105, LAR4B, NU205, AKAP1, TFG, CBP, DDX17, CELF1, RENT1, SMRC1, FUBP2, TNPO1, UBP7, NCLN, FUBP1, FKB10, KBP, PDLI5, FUBP3, CHAP1, Z512B, ZFR, PRRC1, DOCK7, RBM14, VPS35, CIC, EFGM, SIN3A, MINT, CDC5L, PSMD1, EYA3, ATX2, HCD2, ACON, TS101, TCPH, ANM1, SH3G1, COR1B, DIDO1, HNRL1, DDX23, TMED9, NUP58, RBM4, NAA15, B2L13, YTHD1, UNK, ILKAP, SP130, BRD8, I2BPL, SLK, S6A15, PININ, NELFA, PTN23, WNK1, AMPB, GORS2, CYBP, TAF9B, GLOD4, CBX8, NCOA5, CHD8, APMAP, DCP1A, RTN4, ANLN, GEPH, PDLI7, DDX21, SYFB, SYIM, SMC4, RBM12, DDX18, CARF, UGGG1, CDK12, TECR, IF2B1, HPBP1, ITSN2, CNOT2, HACD3, RCC2, SYLC, SUCB1, UBQL2, PCYOX, S30BP, PUF60, NRBP, DACH1, BAZ2A, BAZ1B, CDC23, TASOR, ACINU, CDV3, MRTFB, YETS2, HECD1, PKCB1, DD19B, PRP19, MAGD2, FAF1, TRI33, SRRM2, PA2G4, RUVB2, RUVB1, VDAC3, E41L3, TR150, NOP58, SHLB1, LC7L2, TMED7, STRAP, RTCB, HBS1L, TLN1, HYOU1, PRC2C, SP16H, COPG1, DC1L1, S23IP
Species: Homo sapiens
Download
Zhu Y, Willems LI, Salas D, Cecioni S, Wu WB, Foster LJ, Vocadlo DJ. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. Journal of the American Chemical Society 2020 142(37) 32870666
Abstract:
Hundreds of nuclear, cytoplasmic, and mitochondrial proteins within multicellular eukaryotes have hydroxyl groups of specific serine and threonine residues modified by the monosaccharide N-acetylglucosamine (GlcNAc). This modification, known as O-GlcNAc, has emerged as a central regulator of both cell physiology and human health. A key emerging function of O-GlcNAc appears to be to regulate cellular protein homeostasis. We previously showed, using overexpressed model proteins, that O-GlcNAc modification can occur cotranslationally and that this process prevents premature degradation of such nascent polypeptide chains. Here, we use tandem metabolic engineering strategies to label endogenously occurring nascent polypeptide chains within cells using O-propargyl-puromycin (OPP) and target the specific subset of nascent chains that are cotranslationally glycosylated with O-GlcNAc by metabolic saccharide engineering using tetra-O-acetyl-2-N-azidoacetyl-2-deoxy-d-galactopyranose (Ac4GalNAz). Using various combinations of sequential chemoselective ligation strategies, we go on to tag these analytes with a series of labels, allowing us to define conditions that enable their robust labeling. Two-step enrichment of these glycosylated nascent chains, combined with shotgun proteomics, allows us to identify a set of endogenous cotranslationally O-GlcNAc modified proteins. Using alternative targeted methods, we examine three of these identified proteins and further validate their cotranslational O-GlcNAcylation. These findings detail strategies to enable isolation and identification of extremely low abundance endogenous analytes present within complex protein mixtures. Moreover, this work opens the way to studies directed at understanding the roles of O-GlcNAc and other cotranslational protein modifications and should stimulate an improved understanding of the role of O-GlcNAc in cytoplasmic protein quality control and proteostasis.
Species: Homo sapiens
Download
Liu Y, Chen Q, Zhang N, Zhang K, Dou T, Cao Y, Liu Y, Li K, Hao X, Xie X, Li W, Ren Y, Zhang J. Proteomic profiling and genome-wide mapping of O-GlcNAc chromatin-associated proteins reveal an O-GlcNAc-regulated genotoxic stress response. Nature communications 2020 11(1) 33214551
Abstract:
O-GlcNAc modification plays critical roles in regulating the stress response program and cellular homeostasis. However, systematic and multi-omics studies on the O-GlcNAc regulated mechanism have been limited. Here, comprehensive data are obtained by a chemical reporter-based method to survey O-GlcNAc function in human breast cancer cells stimulated with the genotoxic agent adriamycin. We identify 875 genotoxic stress-induced O-GlcNAc chromatin-associated proteins (OCPs), including 88 O-GlcNAc chromatin-associated transcription factors and cofactors (OCTFs), subsequently map their genomic loci, and construct a comprehensive transcriptional reprogramming network. Notably, genotoxicity-induced O-GlcNAc enhances the genome-wide interactions of OCPs with chromatin. The dynamic binding switch of hundreds of OCPs from enhancers to promoters is identified as a crucial feature in the specific transcriptional activation of genes involved in the adaptation of cancer cells to genotoxic stress. The OCTF nuclear factor erythroid 2-related factor-1 (NRF1) is found to be a key response regulator in O-GlcNAc-modulated cellular homeostasis. These results provide a valuable clue suggesting that OCPs act as stress sensors by regulating the expression of various genes to protect cancer cells from genotoxic stress.
O-GlcNAc proteins:
RBM47, SBNO1, CNOT1, RGPD3, P121C, PDLI1, MYO1C, AIP, PSD11, PGRC1, TAF4, CLIC1, IPO5, IF2B3, AGRIN, PLOD2, HMGN4, IMA4, PESC, NOP56, DDX3X, PODXL, IMA3, NFIB, ARI1A, G3PT, PDCD5, TCRG1, PSA7, SCAM3, HGS, MYPT1, HNRDL, XPO1, ZN609, SC16A, SR140, SET1A, NPC1, TBX3, ARC1B, TIF1A, PGRC2, PFD6, NKRF, ZN185, OGT1, HMGB3, PPM1G, EIF3D, IPO8, RPA34, NUP42, DHX15, PRP4, SERA, PSMD3, RFOX2, PAPS1, MCA3, HNRPR, PRPF3, TPD54, IF4G3, KLF4, E41L2, DENR, XPOT, PRC1, ZN207, GET3, BUB3, ACTN4, BUD23, SYNC, KRT86, CPSF5, U3IP2, CALU, SAHH2, MED14, SMCA5, ZN862, GANP, KDM1A, ACSL4, SNX3, OGA, HNRPQ, PLOD3, MAFK, IMA7, UGDH, PQBP1, DKC1, IF2P, EDF1, DNJA2, BRD4, PFD1, WDR1, CPNE3, ZC11A, CLU, T22D2, PP6R2, CREST, ANR17, PDCD6, TBCA, H2AY, FLNB, NCOR1, SC22B, PR40A, PSIP1, SRS10, SF3B1, CSDE1, NPM3, U520, NU155, WDHD1, CRTAP, IDHC, CCNK, PIAS2, SPF27, DNJC8, RL1D1, SRP72, MTA2, TOM70, TOX4, SC24D, SUN1, NFAT5, AP2A2, SC31A, SEM3D, AGFG2, ZRAB2, LC7L3, LYPD3, FKBP9, SMC2, IPO7, AHSA1, PSMG1, SC24A, SC24B, CNOT4, OXSR1, HS74L, AP2A1, BAG3, CLPT1, ACL6A, LDHA, AATM, EGFR, PGK1, ASSY, LDLR, K1C14, LMNA, APOA2, FINC, ALBU, TFR1, PROC, ALDOA, CYTB, ANXA1, GCR, KITH, THY1, K2C1, G3P, HSPB1, RPN1, GNAI2, AT1A1, AT1B1, ADT2, IF2A, HMGN2, ICAM1, RLA2, JUN, LA, ITB1, K1C18, K2C8, CDK1, ATPB, S10A6, ENOA, PYGL, G6PI, NPM, TPM3, ITAV, ACBP, LDHB, PDIA1, H10, CATD, ANXA2, TBB5, PROF1, SYEP, HS90A, HNRPC, TSP1, SP1, ANXA6, RHOC, DAF, MDR1, 4F2, HS90B, SRPRA, ASNS, CY1, RU17, ITA5, NFIC, VIME, RS17, K2C7, ANXA5, K1C16, RSSA, SNRPA, GSTP1, LEG1, HMGB1, TPM1, ROA1, RU2A, PARP1, PPBI, UCHL1, ALDOC, ATX1L, HS71B, CALM3, RO60, H14, PTPRF, THIO, ESTD, CH60, BIP, HSP7C, LAMP1, TOP1, TOP2A, PYC, C1TC, MPRI, ADHX, PABP1, PCNA, HARS1, IMDH2, TPR, KCRB, ACTN1, XRCC6, XRCC5, RINI, EF2, K1C10, K2C5, PDIA4, P4HA1, PLST, T2FB, CD59, MIF, GLU2B, CBPM, AK1A1, KPYM, ENPL, CCNB1, PO2F1, HNRPL, SYDC, PLAK, ALDR, AMPN, ERF3A, EZRI, FOSL1, FOSL2, MCP, NQO1, GNS, ZEP1, RS2, DESP, MUC1, CD44, CBR1, CREB1, H15, H13, H12, NCPR, AT2A2, CD36, STMN1, HSP76, HMGA1, JUNB, UBF1, JUND, ATF7, CEBPB, PYRG1, DDX5, PFKAL, LEG3, TCPA, PTN1, RL35A, RL7, VINC, SON, RL17, PGAM1, RCC1, ATF1, ML12A, NUCL, SPEE, RXRA, NFKB1, IF2B, ANXA7, BTF3, PSB1, MPRD, LMNB1, CSRP1, FLNA, 5NTD, VDAC1, CD9, TGM2, PIMT, FBRL, PUR2, PUR6, UBA1, NDKB, ROA2, RFX1, CBL, TCEA1, ITA6, SFPQ, PPIB, SYWC, RS3, NFYA, SAHH, COF1, IF4B, KTHY, EF1B, PPAC, CDK2, MCM3, RS12, BRD2, DNJB1, ATPA, PSA1, PSA3, PSA4, S100P, ITA3, MOES, DDX6, DNMT1, PAX6, U2AF2, RL13, S10A4, HMGB2, PTBP1, SYTC, SYVC, EF1G, STOM, 1433T, ARNT, RL10, RFA1, APEX1, PYR1, CALR, MAP4, CALX, TEAD1, GRN, EPHA2, 3MG, TKT, RBMS1, PML, EF1D, ERP29, PRDX6, RL12, KCY, PEBP1, PDIA3, 2AAA, NMT1, PURA2, UFO, SORCN, ILEU, RPB2, METK2, TIA1, ZEP2, DNJA1, PUR9, HNRH3, HNRH1, 1433B, 1433S, STIP1, S10AB, L1CAM, PRDX2, CDD, ELF1, RL9, CD70, KINH, CSTF2, MCM4, MCM5, MCM7, GLYM, HSP74, PROF2, PHB, SPB6, RFC4, RL22, K1C9, MYH9, MYH10, COPB2, BASI, FUS, NU214, DEK, K22E, PRS7, ATPG, RL4, PP1G, GNL1, SRP14, NUP62, TAGL2, TALDO, RBMX, VKGC, GRP75, IF4A3, RS19, RL3, OST48, FEN1, CAPG, TXLNA, TCPZ, RL13A, STAT3, MDHC, MDHM, IF2G, GARS, SYIC, LAP2A, LAP2B, STAT1, MTREX, RS27, LPPRC, RL35, CDN2A, ECE1, LIS1, MUC18, MATR3, MSH2, SSRA, RANG, VDAC2, CBX5, UBP5, KI67, RAGP1, RECQ1, NOP2, BAG6, NOTC1, RL27A, RL5, RL21, RL28, RS9, RS5, RS10, IQGA1, CAPZB, IF1AX, RL29, SOX9, COPD, GSH0, PSMD8, PRC2A, TCPE, PTSS1, K2C6C, AGRE5, PAXI, RL34, LMAN1, NASP, FAS, CDK8, TCPG, EFTU, SYAC, SYSC, MCM2, ACADV, YLPM1, TMEDA, RBM25, HINT1, NU153, RBP2, TAF6, GUAA, CRIP1, GDIB, EMD, SERPH, F10A1, MAP2, RL14, TCPQ, TCPD, ANX11, PAPOA, FXR1, FXR2, RAB7A, SMCA4, SSRD, HCFC1, HDGF, ROA3, 6PGD, HNRPM, IMA1, GDIR1, AGFG1, HNRPF, MSH6, CAZA1, CRIP2, NUP98, ACLY, COPA, SC24C, TCP4, SYRC, ATX1, ATN1, SYYC, UBP14, AT1B3, RD23B, SNAA, IF5, PSMD4, XPO2, TERA, AF10, AF17, NP1L1, ADK, DSRAD, SEC13, NH2L1, PSA, EIF3B, SYMC, IF6, CTBP2, TMM33, NU107, EPIPL, TPIS, EIF3E, SC61B, MYL6, ACTB, IF4A1, RS20, PRPS1, PSA6, S10AA, CDC42, DEST, RAB10, UBC12, UBE2N, ARP3, ABCE1, RS3A, RL26, PSME3, RL15, RL27, RL37A, S61A1, PFD3, B2MG, DAD1, SUMO2, WDR5, NTF2, HNRPK, 1433G, RS7, PP1A, PP1B, RS8, RS15A, RS16, 1433E, RS14, RS23, RS18, RS29, RS13, RS11, RUXE, SMD1, SMD2, SMD3, PRS10, RL7A, ERF1, CNBP, RS4X, RL23A, RS6, H4, RAN, RL23, RAP1A, RS24, RS25, RS26, RS30, GBB2, RL30, RL31, RL10A, RL32, RL11, RL8, PPIA, FKB1A, RS27A, TRA2B, AP2B1, 1433Z, RSMN, SUMO1, DYL1, RL38, RS21, RACK1, UBC9, YBOX1, CSK2B, TPM4, EF1A1, ACTS, TBA1B, TBA4A, TBB4B, CSK21, PA1B2, HBB, HBA, PITX1, GTF2I, PHC1, TCPB, RAE1L, PRKDC, SARNP, RL24, ARF1, ERH, RL19, SRSF3, FOXK1, DAB2, EFNB1, RBM10, RBM3, CYC, MPCP, VIGLN, CLH1, FKBP3, HNRPU, U2AF1, SPTB2, TIAR, SRSF2, FOXK2, RUNX1, FABP5, LAT1, TFAP4, OTUD4, PFKAP, XPC, EWS, MEF2A, SP3, H11, RL18A, FKBP4, PLOD1, RL6, M2OM, DYST, KMT2A, LMNB2, TF65, UBXN1, GLGB, IF4G1, K1C17, TLE3, REL, 1433F, PLP2, CSTF1, SRS11, EF1A2, SUH, GABPA, PAX8, FMR1, PRDX1, RL18, CKAP4, KHDR1, LRP1, SRSF1, DHX9, LG3BP, PPID, SSRP1, NSUN2, RBBP4, EP300, AHNK, HSP7E, GALT2, BST2, NU160, TBL3, ASPH, TROAP, BPTF, NFIA, SF3A3, AIMP1, ILF2, ILF3, LMAN2, TRAP1, FOXC1, MYO1E, CSTF3, ECH1, ACACA, CAF1B, RED, MTAP, TADBP, ROA0, PRDX4, CBX3, PSMD2, GPS2, SRSF9, SRSF5, SRSF6, TIF1B, G3BP1, PTK7, PABP4, EIF3I, TCOF, SF3B2, HAP28, FKBP5, SMAD4, PICAL, TBB3, PRP4B, PIN1, RIPK1, HDAC1, DCTN2, SNW1, TRA2A, CUL4B, DYR1A, TPBG, FHL1, MOGS, CD166, SPTN1, DX39B, TBB2A, KLF5, BYST, RUNX2, CDK13, CKAP5, CIRBP, HNRPD, SCRB2, DAG1, VEZF1, DSG2, EIF3A, UBP2L, SCRIB, TTL12, FHL2, DPYL3, DYHC1, IF4A2, SRC8, TRI25, FLNC, FA50A, CAPR1, RBM39, MCM6, ITPR1, PUM1, MDC1, EPN4, SMC1A, RRP1B, NCOA6, GSE1, UBP10, GANAB, LBR, MEF2D, CHD4, LASP1, ZN638, IMB1, NOLC1, NUMA1, SEPT2, SART3, CND1, ACAP1, U5S1, SYK, IF4H, PDIA6, PLEC, NOMO1, PON2, IPYR, TEBP, NONO, PWP2, RNPS1, PCBP1, PCBP2, SF3B3, KS6A1, SAFB1, SF3A2, RBMS2, SC23A, SC23B, SF3A1, SSXT, NCOA2, TRAM1, SF01, MED1, HMGN3, JHD2C, TRIP6, MARE1, ELAV1, ELF2, TAB1, AAAT, TOM34, UB2V2, NEDD8, ZYX, SEPT7, ADRM1, UAP1, PSMD5, DDB1, CDC37, DPYL2, RBBP7, TAF9, SRSF7, CPSF6, NRF1, FSCN1, IF16, KYNU, H2A2C, H2B2E, TRXR1, HNRL2, PDS5A, QSER1, TSR1, SMU1, P3H1, LSM12, CRTC2, GLE1, H90B2, ZN326, BCORL, TGO1, PRC2B, RRP12, TOIP1, PCID2, NU188, HP1B3, CE170, ZN362, ZC3HD, LRIF1, UBR4, UBAP2, KPRP, RBM26, AHDC1, CROCC, RPRD2, ECM29, MBNL2, ZMYM4, AR6P4, STEA4, ARID2, BICRL, CPIN1, LIN54, TM214, CAVN1, CDC73, EDC4, PRP8, SCYL2, GOLM2, NFRKB, NCEH1, MDEAS, ZC3HE, LARP1, FIP1, CRTC3, SAS6, CSPG4, WDR82, MCAF1, PACS1, SRCAP, RIPR1, UBN2, FBX50, IKIP, H32, LARP4, H2AV, RS27L, HAKAI, SPT6H, SND1, DDX46, BZW1, CYFP1, KDM3B, PHF5A, ZCCHV, NUP54, POGZ, NUFP2, HEAT3, EMSY, RAI1, I2BP2, RBBP6, SH3R1, HUWE1, YTHD3, KHDC4, CENPV, KAISO, MYPN, PEG10, PABP2, KTN1, THOC4, GP180, CAND1, CARM1, PRSR1, DDX42, DAAF5, P66A, RB6I2, CHERP, ANKH1, CCAR1, RAVR1, SPB1, SMAP1, PHAR4, MAML2, PORIM, CCAR2, NUP93, LRC47, MT1M, FNBP4, CPSF7, PR38A, GT251, TXND5, PAIRB, FA98A, TNR6A, PHC3, ABCF1, VP37A, NUP43, NUP37, NUP35, RLA0L, THOC2, WDR36, SMRC2, PUM2, SPP2A, ALMS1, C99L2, DDX54, DLG5, BRX1, DOT1L, PO210, GEMI5, ZN384, SCRB1, ZC3HF, NU133, PDC6I, NUDC2, GLMP, LMO7, ATX2L, PALLD, PSPC1, P66B, DNJC9, ELYS, DDX1, H1X, NICA, TM131, MAML1, HS105, CNOT9, ZN592, LAR4B, GCN1, NU205, TFG, TAF4B, STAM1, CBP, RBP56, DDX17, CELF1, OSTF1, RENT1, SMRC1, SMRD2, FUBP2, TNPO1, NEP1, UBP7, STMN2, LPP, MED12, H2A1C, SMCE1, RL36L, NCLN, FERM2, FUBP1, LRC59, FKB10, PF21A, INT12, FWCH2, AP2M1, REPS1, CMBL, SNR40, SEH1, DAZP1, RBM33, S10AG, OTUB1, HMCES, DDX27, P121A, PDLI5, FUBP3, WNK4, CHAP1, ZC3HA, CLP1L, CNDP2, ZFR, EP400, PRRC1, NOL4L, RBM14, QKI, PLIN4, S38A2, VPS35, CIC, MED15, MCCA, WRIP1, STRBP, TM209, SIN3A, MINT, UHRF1, HTF4, CDC5L, PFD5, RING2, EYA3, NUP88, POP1, MNT, SCAFB, EIF3C, DNJC7, PHB2, ATX2, ROAA, NP1L4, TS101, CPNE1, TCPH, EBP2, ANM1, H2B1M, RNZ2, TBA1C, MBB1A, TXD17, ERP44, ESYT1, WAC, DIDO1, AN32E, TMM43, TBB6, HNRL1, DDX23, TBB2B, TM109, TMED9, NUP58, GNL3, KIFC1, NUP85, RBM4, NAA15, SRRT, PDIP3, YTHD1, WNK3, NOG1, UNK, SLIRP, IF5A2, NAT10, ILKAP, XRN2, SP130, RGAP1, DDX47, I2BPL, PININ, BOLA2, PTN23, WNK1, FA83D, ZHX3, STEEP, RPF2, ZN703, GORS2, JUPI2, MLXIP, CYBP, RC3H2, TENS1, EMAL4, NCOA5, TNR6C, CHD8, APMAP, ENY2, CD320, UBN1, DCP1A, LUC7L, RTN4, RPR1B, NIT2, ANLN, PDLI7, DDX21, SIAS, SHLB2, MBNL1, OSTC, RAB6B, PHP14, SYFB, RBM12, DD19A, LYAR, CARF, BCLF1, TAB2, TMOD3, CDK12, IF2B1, MAT2B, MYOF, ITSN2, BICRA, CNOT2, SEP10, RCC2, BCCIP, RRBP1, RBM27, KANL3, ATX10, MRC2, SAE2, NXF1, ABCF2, TES, TCF20, SUN2, LIMA1, CHRD1, SEPT9, UBQL2, S30BP, MED13, PFD2, PUF60, XPO7, SIX4, DDX41, CCNL1, JUPI1, MRT4, GPTC8, NUDT5, RALY, ACINU, AGO2, NUP50, ZHX1, CDV3, TRPC5, MRTFB, ZMIZ1, YETS2, HECD1, PKCB1, COR1C, TPX2, AKP8L, PRP19, UBQL1, G3BP2, CHIP, PACN2, SSRG, EPCR, SCAF8, TRI33, SRRM2, PA2G4, CD11A, SMC3, RTRAF, RUVB2, EIF3L, RUVB1, NUDC, SYFA, DRG1, E41L3, RRP44, TR150, WBP11, NOP58, ZN281, SGT1, NOSIP, LSM2, LC7L2, SBDS, STRAP, RTCB, NOC2L, RL36, CHTOP, TLN1, ARIP4, HYOU1, PRC2C, PPME1, YTHD2, SP16H, TNPO3, SRPRB, RBM8A, ZN706, NCOR2, NPTN, COPG1, CLIC4, MD1L1, BZW2, IF2B2, SCC4, ZHX2, S23IP
Species: Homo sapiens
Download
Hao Y, Fan X, Shi Y, Zhang C, Sun DE, Qin K, Qin W, Zhou W, Chen X. Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nature communications 2019 10(1) 31492838
Abstract:
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG.
O-GlcNAc proteins:
A0A087X1C1, A0A0B4J203, A0A0C4DFX4, SRCRL, SBNO1, CNOT1, IQCAL, RGPD3, LRIQ3, P121C, YU005, H0YHG0, H3BMQ9, H8Y6P7, I3L521, PDLI1, TAF4, P3C2A, DDX3X, NFIB, ARI1A, ABLM1, KMT2D, ZN197, RGPD8, MYPT1, ZN609, ZN646, SET1A, SYNEM, ZN185, NUP42, SI1L1, TGFI1, VIP2, M3K7, TPD54, SYNJ1, IF4G3, WIPF1, SMAD6, MYPT2, PLIN3, MAFK, N4BP1, ANR17, NCOR1, GGYF1, PRDM1, STAM2, TOX4, AGFG2, UNC5C, VENTX, SC24B, PCNT, ZBT11, CNOT4, BAG3, TXD12, TTLL1, APCL, NSD2, EGFR, IGF2, CRYAB, LMNA, ALDOA, GCR, HSPB1, PCCA, RLA2, JUN, HEP2, K1C18, ANXA2, ADRB2, NFIC, VIME, 5HT1A, SNRPA, ROA1, CO4B, ATX1L, FMAS1, GRL1A, DERPC, C1C1L, GLI2, TPR, GYS1, MYL6B, PO2F1, ATF2, ZEP1, RS2, ITB4, JUNB, JUND, ATF7, SON, ATF1, NEBU, CSRP1, NF1, ROA2, RFX1, CBL, COF1, IF4B, ARNT, MAP4, CALX, TEAD1, PDIA3, CDC27, CLIP1, ZEP2, ELF1, TTK, PCKGC, ADDA, NU214, MP2K2, NUP62, VKGC, VATA, CUX1, TXLNA, PBX2, HELZ, UTRO, RFX5, PAXI, NR2C2, NASP, CENPF, YLPM1, NU153, RBP2, TAF6, EMD, PAPOA, HCFC1, AGFG1, NUP98, ATX1, MYOM2, AF10, AF17, DSRAD, NU107, RL8, F193A, PITX1, PHC1, RT36, SARNP, FOXK1, HTD2, DAB2, RHG04, VIGLN, HNRPU, SPTB2, SCN7A, FOXK2, EWS, MEF2A, SP2, NUCB1, IF4G1, NOTC2, TLE3, TLE4, NMDZ1, GABPA, ZO1, ACK1, CACB2, EP300, AHNK, MGAT2, GALT2, FOXO1, SNF5, BPTF, NFIA, DPYD, TP53B, ZN155, FOXC1, AKAP6, ROA0, GPS2, G3BP1, KCAB2, PABP4, PLD1, PICAL, MAMD1, RIPK1, SNW1, MTMR1, CUL4B, ASPP2, NFYC, CDK13, TOB2, DAG1, VEZF1, DSG2, UBP2L, GIT2, SRC8, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, MEF2D, ARI5B, NUMA1, PSME4, SART3, KIF14, BRD3, EBP, PLEC, RBMS2, TAF1C, SF01, MED1, JHD2C, MARE1, ELF2, TAB1, ZFHX3, ZYX, ADRM1, TAF9, RFX7, QSER1, QRIC1, ZN800, LR75B, EPC2, CRTC2, YIF1B, ZN326, K2026, PRC2B, SYAM, CE170, NHSL1, ZN362, ZEP3, LRIF1, UBR4, SKT, RHG21, UBAP2, RBM26, RC3H1, VP13D, RPRD2, ZN318, TASO2, TTC23, ERR2, KAZRN, ARID2, RHG17, ANR40, BICRL, NIPBL, LIN54, NFRKB, ZN449, RSBNL, MDEAS, ZC3HE, CRTC3, SAS6, MCAF1, BCOR, MPRIP, GGYF2, BNC2, FGD5, CO039, SRCAP, YJ005, UBN2, RAPH1, UBP54, PREX2, HAKAI, ASXL2, SPT6H, KDM3B, ZCCHV, RGPD4, POGZ, SZRD1, MAVS, EMSY, RAI1, I2BP2, SRGP1, SH3R1, YTHD3, STRA8, MYPN, TLK2, ZFHX4, BCL9L, IQCH, SNX32, PRSR1, MEX3D, DDX42, CACL1, P66A, CC125, KCC1D, HID1, AHNK2, FOXP4, NAV2, MGAP, RP1L1, PHF6, ANKH1, SUGP1, CCAR1, RPAP2, MILK2, EFC13, PHAR4, XRN1, TBC3A, TENS4, SPART, NUP93, ZN687, SYNPO, FNBP4, TAB3, CPSF7, ARFG1, ENAH, XXLT1, CHSTE, TNR6A, PHC3, SP20H, NAV1, VP37A, KMT2C, ARI1B, NUP35, TDRD7, NEDD1, PUM2, ALMS1, DLG5, ZN384, WIPF2, FRS2, F222B, SMAP2, IASPP, ZFN2B, TWST2, PCNP, LMO7, ATX2L, STAB2, PALLD, CSKI2, SRS12, P66B, BBX, SMG7, RTF1, PHF3, MAML1, LAR4B, PRP16, PRCC, CBP, EVPL, DDX17, GPKOW, FUBP2, LPP, FUBP1, TTC28, PF21A, KLH29, RBM33, MMAB, EF2KT, GWL, P121A, PDLI5, INT4, FUBP3, PAWR, ANCHR, Z512B, ZFR, EP400, COG8, RBM14, QKI, LENG8, CIC, MED15, ERBIN, MINT, HTF4, TEAD3, RGPD5, CGRE1, ATX2, CTIP, SH3G1, DPH2, WAC, DIDO1, TBCD, HNRL1, HIRP3, CAR11, YTHD1, NOG1, AMRA1, TANC1, CEP44, MFF, SP130, BRD8, RGAP1, I2BPL, RBNS5, ADNP, FOXP1, PTN23, CA198, WNK1, E41L1, ZHX3, ILRUN, PEAK1, PKHG2, ECT2, JUPI2, PKHA5, RC3H2, TAF9B, ZBT20, NCOA5, TANC2, ZN532, ARFG3, PLPL8, UBN1, PCD12, INCE, PDLI7, 4ET, DIAP3, PDS5B, RBM12, CCD87, CARF, TAB2, MS18A, CDK12, ITSN2, WHRN, DAPLE, SLAI2, BAHC1, BCCIP, C2D2A, RBM27, KANL3, ZN219, LIMD1, TCF20, UBQL2, S30BP, NRBP, CTNA3, BAZ2B, HERC5, SIX4, TASOR, GMEB2, PARP4, NUP50, ZHX1, MRTFB, PRR12, YETS2, HECD1, SPAT2, SCAF8, LIMC1, ZC3H4, SRRM2, SCML2, ZN148, ZFP30, WDR37, MYH15, R3HD2, ZN281, COQ6, DCAF1, RPGF2, CRBG1, PRC2C, RBM7, CD2AP, TSSC4, HCFC2, NCOR2, GMEB1, DC1L1, NCOA3, ZHX2, S23IP, U3KPZ7
Download
Worth M, Hu CW, Li H, Fan D, Estevez A, Zhu D, Wang A, Jiang J. Targeted covalent inhibition of O-GlcNAc transferase in cells. Chemical communications (Cambridge, England) 2019 55(88) 31626249
Abstract:
O-GlcNAc transferase (OGT) glycosylates numerous proteins and is implicated in many diseases. To date, most OGT inhibitors lack either sufficient potency or characterized specificity in cells. We report the first targeted covalent inhibitor that predominantly reacts with OGT but does not affect other functionally similar enzymes. This study provides a new strategy to interrogate cellular OGT functions and to investigate other glycosyltransferases.
O-GlcNAc proteins:
NUP62, NOTC1
Species: Homo sapiens
Download