REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (8 results)


Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angewandte Chemie (International ed. in English) 2023 62(17) 36852467
Abstract:
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
O-GlcNAc proteins:
AMRA1, SETX, SKT, BCORL, AGRIN, MGAP, ARI1A, KANL3, CHD6, PHRF1, ZCH24, EP300, KIF7, KI67, CE350, ANR11, NUMA1, TPR, MORC3, TAF4B, KMT2B, EMD, AKAP1, TCOF, DCTN1, MNT, NCOA3, ATN1, ECP3, DPOD2, CTND2, PIAS3, AF10, ACK1, GET3, DSG2, ESS2, ATX2, PDLI1, ULK1, BARD1, KDM6A, ZN106, NSD1, ZFR, HIPK1, SETB1, LAMC1, MYCN, GCR, EGR1, RC3H2, ATX1L, DERPC, K2C8, HSPB1, JUND, FGFR1, G3P, ATF2, COF1, HEXB, VIME, PO5F1, CBL, CCNB1, PO2F1, RS2, NFKB1, MAX, PABP1, NEDD1, PTN12, FMR1, ELK1, FOXK1, STAT3, SOX15, PLIN2, CBP, NEDD4, YAP1, RFX1, SOX2, LMNA, ROA1, S1PR2, ARNT, RD23A, PLTP, KMT2A, KLF16, FOXP1, TB182, GMEB2, SENP1, YTHD1, MRTFB, DOCK4, STIM1, TBX3, NCOA1, ERF, SIAE, NACAM, ATF1, WNK1, G3BP2, DNLI3, G3BP1, RLA2, GABPA, S30BP, ZEP1, ENAH, SOX13, CAPR2, APLP2, CLUS, TLE3, GATA4, MITF, CHD8, ZCH18, TANC1, CDK12, SAP25, LIN41, MLXIP, HROB, VRTN, CO039, PDLI7, SMCA4, PRC2C, MILK2, MIDN, YETS2, PBIP1, FUBP2, TFPT, SRBP2, GSE1, F117B, ZN865, WDR62, QRIC1, FOXK2, RREB1, TNR6C, DAB2P, TNR6A, RHG17, PKHA7, COBL1, FCHO2, TET1, ARMX5, GARL3, TET2, CDV3, PHAR4, C2CD3, LIN54, NPA1P, TAB3, TASO2, RESF1, NUFP2, UNKL, COBL, KDM6B, PRSR1, SMG7, RBM27, PHF12, ZDBF2, PUR4, SYNRG, UIMC1, SIN3A, NFAC2, SRC8, SKIL, ELF1, KLF4, NCOR1, KLF3, NCOA2, FOXD3, PAPOA, HCFC1, P3C2A, SIX4, ZFHX3, TOB1, AP180, GLI3, ATRX, MAFK, NPM, M3K7, DAG1, SPTB2, TAF6, TIF1B, SPT6H, SH3G1, ARI3A, TLE1, TLE4, IF4G2, MINT, ZIC3, ZYX, NUP62, PHC1, TFE3, TIF1A, SF01, DAZL, RBL1, KNL1, BCL9L, SBNO1, SLAI1, PKP4, CDK13, SH3R1, JHD2C, HECD1, ARMX2, LAR4B, RHG21, HELZ, SCAF8, UTF1, PKHG2, NIPBL, CCD66, F135A, RPRD2, WWC2, ZN532, KRBA1, TAF9B, RBM26, INT1, BCR, AHDC1, PTN23, PAPD7, KDM3A, KMT2D, CHD4, RN220, NUP98, NFRKB, GGYF2, LCOR, TEX2, PF21A, KDM3B, FNBP4, CNOT1, LARP1, RHG26, NU188, CNDD3, PICAL, SPAG5, HUWE1, SMAP2, CPEB3, MYCB2, PRC2B, PRR14, MACOI, ATX2L, CKP2L, PRC2A, MCAF1, SI1L2, KANL1, ERBIN, R3HD2, RERE, PUM2, PUM1, NU214, WNK4, TCAM1, SAS6, CAMP3, UBN2, TNC18, AGFG2, UBP2L, WNK3, ZN598, CTIP, SHAN2, NANOG, DDX42, RHG32, VGLU3, LPP, TET3, MYPT2, IF4B, CNO10, MISSL, TB10B, CARF, TGO1, ZN879, SP130, ZC3HE, ZNT6, SUN2, TNR6B, ARI5B, EMSY, BNC2, KAT6B, KMT2C, CLAP2, CNOT4, SRRM2, TOX4, GEPH, SYP2L, LARP4, KANK2, SALL4, YTHD3, TOIP2, KAT6A, ASXL2, POGZ, SREK1, TAF5, ZHX2, EPC2, SI1L1, CND2, RBM14, SUCO, CNOT2, DIDO1, SMAG1, LENG8, CDAN1, DPPA4, LRIF1, VCIP1, MB214, TAB1, SCYL2, ASPP2, LS14B, SYEP, F193A, BCOR, OGT1, SUGP1, NAV1, SYNJ1, ADNP2, RPGF2, BICRL, EP400, PHC3, VP37A, EPN2, P66A, PDLI5, ELYS, ZBT20, ANLN, AGFG1, MATR3, CASC3, I2BPL, PO121, ALMS1, SF3A1, GRHL2, ATF7, CACL1, DC1L1, MTSS1, SPART, TDIF2, HBP1, NUP58, RFIP5, BRD8, WIPI1, CDK8, CS047, ATX7, NUP35, LUZP1, RPAP2, NDC1, MAVS, AMOT, CSKI2, P66B, TAF9, IPO4, ZCH14, UBAP2, NCOA5, FUBP1, RBM47, AJUBA, VPS36, DCP1A, EGLN2, YTHD2, SRGP2, GRHL1, BCL7B, P4R3B, PLRG1, CIC, WAC, TRPS1, MED1, ACATN, NRBP, RP25L, NONO, TAB2, RBM10, EPN4, DDAH2, NOG2, ZN281, HGS, NASP, ARIP4, ANR17, ZN318, TRI33, MZT2, ZWINT, ECD, YIF1B, ROA0, DHRS7, TPD54, SSBP3, PSRC1, SARNP, BCL9, SP2, NOP56, SH24A, FIP1, PLIN3, MYPT1, KC1D, TCF20, TOR3A, SALL1, ZN704, RBP2, UBE4B, TBX20, AFF4, RBCC1, 4ET, PALLD, ELF2, TSSC4, NUDT3, HAKAI, ADRM1, NCOA6, FANCA, GIT2, BAG3, TOB2, ZN207, SON, TBL1X, PLEC, MACF1, GOGA5, QKI, GAB1, DMRT1, YLPM1, PCM1, RHG07, TAF7, FOXO1, ADA23, AKA12, UXT, MAN1, NCOR2, AKT3, COR1B, TNIP1, GANP, DEMA, CARM1, RGAP1, ITSN2, ZO2, KLF5, ADNP, ARI3B, BCL3, SE1L1, E41L1, ZN292
Species: Mus musculus
Download
Abo H, Kume M, Pecori F, Miura T, Matsumoto N, Nishihara S, Yamamoto K. Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells. PloS one 2022 17(5) 35604954
Abstract:
O-GlcNAcylation is the only sugar modification for proteins present in the cytoplasm and nucleus and is thought to be involved in the regulation of protein function and localization. Currently, several methods are known for detecting O-GlcNAcylated proteins using monoclonal antibodies or wheat germ agglutinin, but these methods have some limitations in their sensitivity and quantitative comparison. We developed a new disaccharide-tag method to overcome these problems. This is a method in which a soluble GalNAc transferase is expressed intracellularly, extended to a disaccharide of GalNAc-GlcNAc, and detected using a Wisteria japonica agglutinin specific to this disaccharide. We verified the method using human c-Rel protein and also highly sensitively compared the difference in O-GlcNAc modification of intracellular proteins associated with differentiation from embryonic stem cell (ESC) to epiblast-like cells (EpiLC). As one example of such a modification, a novel O-GlcNAc modification was found in the transcription factor Sox2 at residue Ser263, and the modification site could be identified by nano liquid chromatography-mass spectrometry.
O-GlcNAc proteins:
SOX2
Species: Mus musculus
Download
Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular & cellular proteomics : MCP 2021 20 34678516
Abstract:
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease.
O-GlcNAc proteins:
IQIP1, A0A0A6YWG7, A0A0G2JF55, A0A0N4SW93, A0A0R4J060, A0A0U1RPL0, A0A140LIW3, A0A140T8K9, A0A1B0GS41, A0A1B0GS91, A0A1D5RMI8, A0A1L1M1J8, A0A1L1SR84, A0A1N9NPH8, A0A1Y7VNZ6, A0A286YDB3, A0JNY3, A2A482, A2A654, TANC2, LZTS3, AJM1, BCORL, A2AUD5, A2AWN8, B1ASA5, B1ATC3, B1AUX2, B2RQL0, CSPP1, B2RY58, B7ZNA5, CTTB2, D3YU22, D3YUV1, D3YWX2, D3YZ21, SHAN1, D3Z5K8, E0CXZ9, E9PUL3, PRRT2, E9PUR0, E9PV26, E9PVY8, SET1A, E9Q0N0, E9Q3E2, E9Q3G8, E9Q4K0, ARI1B, SETD2, E9Q6H8, E9Q6L9, E9Q828, E9Q9C0, E9Q9Y4, E9QAQ7, E9QAU4, E9QAU9, E9QKI2, E9QLZ9, E9QM77, F2Z3U3, F6RQA2, SYGP1, F7C376, BICRA, F8VQL9, F8WIS9, G3UZM1, G3X8R8, G3X928, RFIP2, H3BKF3, H3BKP8, H9KV00, J3QNT7, DPYL2, PRDX6, MNT, NUMBL, PEX5, BMPR2, CTND2, PITM1, ACK1, CAC1B, SYUA, DSG2, SPT5H, E41L2, SP3, KDM6A, CPNS1, ZFR, HCN1, CTBP1, BSN, STAM2, SYN1, MBP, EGR1, NFL, NFM, ITB1, RC3H2, ATX1L, RL7A, MAP1B, VIME, EIF3A, RGRF1, PABP1, FOXK1, EAA2, CBP, RFX1, SOX2, KPYM, CTBP2, GCP3, TB182, GMEB2, PI5PA, DOCK4, PCBP1, LIPA3, RS3, PAX6, KCNJ3, PP2BA, TBA4A, STAM1, NCOA1, CXB6, WNK1, PSME2, WBP2, SHPS1, NRSN1, CTNB1, PLAK, S30BP, NFIA, ZEP1, YES, CAPR2, MITF, GRD2I, Q0VF59, HDX, MA6D1, F171B, ZFHX2, MLXIP, PDLI7, PRC2C, CIART, YETS2, SRBP2, Q3U2K8, GSE1, RREB1, WNK2, DAB2P, ZEP2, AAK1, TNR6A, GRIN1, SRBS2, GRM5, Q3UZG4, RBM44, Q3ZB57, PHAR4, RESF1, Q5EBP8, UNKL, VP13A, COBL, KDM6B, PRSR1, Q5RIM6, SMG7, RBM27, TM1L2, Q5SVJ0, Q5SXC4, SIN3A, GAS7, CAPR1, KLF3, SIX4, AP180, GRID2, PACN1, LASP1, RAI1, NOTC3, SALL3, SPTB2, ARI3A, NUP62, PHC1, TFE3, PAN3, TIF1A, SF01, SYN2, SBNO1, CRTC1, RIPR1, GIT1, PKP4, ABLM3, ARMX2, CE170, Q6AXD2, NIPBL, FBX41, RPRD2, WWC2, Q6P1J1, Q6P5E3, UGGG1, SPRE3, Q6P9N8, AHDC1, PTN23, TRAK1, DLGP3, NYAP1, DHX29, NFRKB, MAGI1, Q6XZL8, CNOT1, SYNE2, IF2A, PICAL, PLPR4, PLPR3, CCNT2, PRC2A, MAP6, MCAF1, RERE, NU214, SESD1, UBP2L, C2C2L, CNKR2, SLIK5, RHG32, LPP, NELFA, C42S2, TB10B, TGO1, RFOX3, SP130, ANS1B, ZC3HE, ZC21A, BAIP2, EMSY, KAT6B, RELL2, LIPA2, CNOT4, TOX4, GASP2, CREST, KDM4A, GRIN3, KAT6A, ZN609, PAK5, A16L1, SI1L1, SH3R3, SKA3, RBM14, Q8C5J0, CNOT2, WDR26, UBA6, ANK2, DIDO1, SYNPO, VCIP1, FHI2A, NUP88, NED4L, SET1B, TENS2, OGT1, NAV1, STAU2, AFG32, S4A8, ZBT20, HS12A, GLT18, UNC5A, AGFG1, FRRS1, KCNQ3, PO121, T2FB, MTSS1, Q8R2E1, NUP35, MAVS, SGIP1, HNRL1, PP16B, CCG8, SFPQ, UBAP2, NCOA5, AJUBA, DCP1A, TWF1, ALS2, ETFD, CIC, GRIP1, GORS2, NONO, ZN281, CT2NL, RN111, ANR17, PPP6, RBM7, CYGB, SARNP, DLGP1, SUN1, TM263, GON4L, PLIN3, MYPT1, NBEA, ZN704, RBP2, ARHG7, RTN3, NUDT3, TULP4, Q9JIZ5, PAR6G, SCAM5, PRG4, ZN207, SRCN1, ASAP1, DREB, ULK2, ADDA, PCLO, UBQL2, FBX6, PCM1, SYT7, CRY2, FOXO1, MAST1, LYPA2, TEN3, GANP, DEMA, E41L3, ZO2, BAG6, E41L1, RM40, GRIA3, S4R294, V9GWU7, V9GX40
Species: Mus musculus
Download
Myers SA, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, Thomas S, Maynard J, Broeker M, Thomson M, Pollard K, Yamanaka S, Burlingame AL, Panning B. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. eLife 2016 5 26949256
Abstract:
The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor.
O-GlcNAc proteins:
SOX2
Species: Mus musculus
Download
Jung JH, Iwabuchi K, Yang Z, Loeken MR. Embryonic Stem Cell Proliferation Stimulated By Altered Anabolic Metabolism From Glucose Transporter 2-Transported Glucosamine. Scientific reports 2016 6 27311888
Abstract:
The hexose transporter, GLUT2 (SLC2A2), which is expressed by mouse embryos, is important for survival before embryonic day 10.5, but its function in embryos is unknown. GLUT2 can transport the amino sugar glucosamine (GlcN), which could increase substrate for the hexosamine biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine modification (O-GlcNAcylation) of proteins. To understand this, we employed a novel murine embryonic stem cell (ESC) line that, like mouse embryos, expresses functional GLUT2 transporters. GlcN stimulated ESC proliferation in a GLUT2-dependent fashion but did not regulate pluripotency. Stimulation of proliferation was not due to increased O-GlcNAcylation. Instead, GlcN decreased dependence of the HBSP on fructose-6-PO4 and glutamine. Consequently, glycolytic- and glutamine-derived intermediates that are needed for anabolic metabolism were increased. Thus, maternally obtained GlcN may increase substrates for biomass accumulation by embryos, as exogenous GlcN does for GLUT2-expressing ESC, and may explain the need for GLUT2 expression by embryos.
O-GlcNAc proteins:
PO5F1, SOX2, NANOG
Species: Mus musculus
Download
Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell stem cell 2012 11(1) 22608532
Abstract:
O-linked-N-acetylglucosamine (O-GlcNAc) has emerged as a critical regulator of diverse cellular processes, but its role in embryonic stem cells (ESCs) and pluripotency has not been investigated. Here we show that O-GlcNAcylation directly regulates core components of the pluripotency network. Blocking O-GlcNAcylation disrupts ESC self-renewal and reprogramming of somatic cells to induced pluripotent stem cells. The core reprogramming factors Oct4 and Sox2 are O-GlcNAcylated in ESCs, but the O-GlcNAc modification is rapidly removed upon differentiation. O-GlcNAc modification of threonine 228 in Oct4 regulates Oct4 transcriptional activity and is important for inducing many pluripotency-related genes, including Klf2, Klf5, Nr5a2, Tbx3, and Tcl1. A T228A point mutation that eliminates this O-GlcNAc modification reduces the capacity of Oct4 to maintain ESC self-renewal and reprogram somatic cells. Overall, our study makes a direct connection between O-GlcNAcylation of key regulatory transcription factors and the activity of the pluripotency network.
O-GlcNAc proteins:
PO5F1, SOX2, KLF4
Species: Mus musculus
Download
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Molecular & cellular proteomics : MCP 2012 11(8) 22645316
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
O-GlcNAc proteins:
A0JNY3, A2A653, A2A654, TANC2, ZEP3, MA7D2, CKAP5, CAMP1, LZTS3, A2AJ19, AJM1, MA7D1, A2ALK6, RPGP1, UBR4, A2AP92, SKT, ANR63, A2ATK9, A2AUD5, A2BI30, A6H6J9, A6MDD2, A8DUV1, B1AQX6, B1AR09, GRIK3, B1ATI9, B1AWT3, NHSL2, FRS1L, UBP24, DLGP4, B2RQ57, B2RQ80, PYR1, B2RQL0, B2RQQ5, GNAI1, B2RUE8, OTU7B, B2RWX1, B6ZHC4, B6ZHC5, B7ZCA7, B7ZMP8, B7ZNA4, B7ZNF6, B7ZWM6, B9EHE8, CTTB2, B9EKL9, PTPRZ, D1FNM8, D3YU59, D3YWX2, DGKH, D3YXR8, PGBD5, SHAN1, D3Z0V7, D3Z2J5, D9HP81, E0CYT1, E9PUA3, E9PUC4, DGKD, E9PUR0, E9PV14, E9PV26, KI67, E9PWL1, E9PWM3, E9PY55, E9PZP8, E9Q1M1, E9Q2B2, E9Q3D6, E9Q3G8, E9Q3M9, E9Q4N6, E9Q616, E9Q6T8, E9Q6Y8, NUMA1, E9Q828, E9Q9I2, E9Q9J6, E9QA16, E9QAP7, E9QAR5, SC16A, E9QJU8, E9QMJ1, SYGP1, RFIP2, HXK2, CAN2, SC22B, DPYL2, STXB1, TCOF, DCTN1, GLU2B, EF2K, PRDX4, AIP, NUMBL, GSTO1, GSH0, M3K5, PSMD4, DHX15, NPC1, BMPR2, VIAAT, BCAT2, CTND2, PITM1, CSK22, REPS1, ACK1, SLK, CAC1B, PGRC1, IMPA1, SYUA, AKA7A, STRN, RL35A, AT2A2, PGAM2, ATX2, NMT1, E41L2, GPX4, EMC8, DHB12, HCN4, KDM6A, ZN326, SORL, GRPE2, KLC1, ZFR, O88568, HCN2, HCN1, BSN, TOM1, RPP30, DNJB5, COX1, HA1D, HBA, K2C1, MBP, ALDOA, PGFRB, LDHA, G6PI, ENPP1, NEUM, ANXA2, RIR1, HS90A, EGR1, MDHM, KCC4, NFL, NFM, GNAI2, PDIA1, NUCL, CADH1, RC3H2, LRC4B, IGS11, DERPC, UBB, IFI5B, IFI4, ANXA1, EF1A1, H2B1F, PARP1, HS90B, DMD, KCC2A, TCPA, A4, COX5A, GELS, UMPS, NCAM1, GPDA, MDHC, SRP54, RLA0, GLNA, H12, LEG1, DDX3L, SPTN1, AP2A2, TPIS, KS6A3, COF1, GNAO, NFH, SERPH, VIME, MTAP2, EIF3A, CBX3, IMDH2, MCM3, CTNA1, MAP4, GNA12, GNA13, PDIA3, PSB8, NCKP1, PABP1, FKBP4, HMGB2, AIMP1, LA, ACM4, SYWC, RANG, RAB5C, RAB18, CALX, PRDX1, RL12, PPM1B, DNLI1, CAP1, STAT3, PURA, OPRM, TCPQ, CX6A1, MSH2, H14, H11, ALDR, ALD2, CBP, AINX, NEDD4, RP3A, CAPZB, SRPRB, RL36, SOX2, HS74L, ADT1, ROA1, INPP, PCY1A, MCM4, CSRP3, RAB7A, CDN2A, HDGF, ADT2, IMA1, UBP10, KPYM, RIDA, HMGA2, RL10A, CCHL, SOX1, RAB2A, ATX1, CACB3, HMCS2, GOGA3, ATPK, ATPB, ACTN4, IDI1, ACOT8, PTPA, KCNN2, KCNN3, TB10A, TB182, SF3B6, MRTFB, DOCK4, MYPR, EIF3E, PCBP1, LIPA3, ACTB, IF4A1, SNP25, RAB10, CSN2, RRAS2, PRS8, RS15A, 1433E, RS18, RS11, SMD1, ABI2, EF1A2, ACTA, VATB2, RL23, RS24, GBB1, HSP7C, TCTP, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, RS17, RS12, UB2L3, RACK1, ACTS, TBA4A, TBA1A, TBB4B, PLXA2, DCC, EBP, NFIX, EM55, HNRH2, NCOA1, ELAV1, RGRF2, USP9X, TCPB, TCPE, TCPZ, NUCB2, IRS2, WNK1, RL36A, CSRP1, SEPR, RS3A, DPYL1, MPRIP, CAC1A, ATP5J, BOP1, RS5, WBP2, CXAR, PLPL9, G3BP1, RBBP6, CDS1, TBB5, IL6RB, NMDE2, NMDE3, TOP2A, NOTC1, NDKB, AQP1, UBA1, CTNB1, S30BP, NFIA, NUCB1, MARK3, APLP1, ENAH, ATPA, TF65, YES, MARK2, PGBM, PYC, CAPR2, EMAL1, LARP7, BAX, CNN2, LYAR, CHD8, CNNM1, INF2, TT21B, Q0IJ77, TRIO, VGF, TANC1, CDK12, Q14B66, MA6D1, NSUN2, MCM9, PHAR1, PSD3, Q2Q7P0, FILA2, Q3TAD4, NB5R4, GUAA, METK2, PRC2C, Q3TRG3, PLPL6, K22E, YETS2, Q3TY93, FUBP2, F117B, Q3U882, LBR, TM109, FOXK2, Q3UFK1, Q3UGZ4, TNR6C, DAB2P, ZEP2, AAK1, Q3UHT7, DTX3L, EDC4, PARP3, WASC4, GRIN1, Q3UQ23, SRBS2, THSD4, MRCKA, SPRY3, KSR2, GRM5, TBCD9, LRRF1, ARMX5, STOX2, SHAN3, UBN1, OXR1, DDX17, PHAR4, ANR28, ZN608, Q571B7, PRAG1, TAB3, Q58DZ3, IQEC2, Q5DU62, AAPK1, NUFP2, UNKL, SMG7, RBM27, CYFP2, TM1L2, PSME4, ANR40, Q5SUH6, GGNB2, SYNRG, Q5SVJ0, RPGP2, TBC9B, ACACA, Q5SXC4, Q5XJV5, LMTK3, RN123, ZDHC8, SRC8, MYL6, SKI, SAMH1, IRGM1, CLD11, NPT2A, SPB6, VDAC2, VDAC3, VDAC1, STYX, RBBP4, ASNS, NCOA2, LAP2A, PPM1G, ASTN1, PRDX2, HCFC1, APC, KCNA4, AP180, FXR1, GDIB, GRID2, GRID1, CBX5, SERA, LASP1, NPM, PCBP2, M3K7, SRBS1, DBNL, SH3G1, CYTB, IF4G2, MINT, ZYX, RALY, TFE3, Q640L6, AR13B, HECAM, NPDC1, SYN2, TBR1, ISG15, ABCG1, ATP4A, MRC2, G3PT, PTN13, TPP2, CTNA3, SBNO1, BEGIN, K1549, GIT1, SLAI1, PKP4, PEAK1, CDK13, SH3R1, MYOF, ABLM3, ARMX2, CE170, LAR4B, NOP58, Q6GR78, TPM4, NIPBL, RRP5, FBX41, Q6NVA3, RPRD2, WWC2, ZN532, Q6NXW0, S23IP, SMHD1, NEST, CSKI1, Q6P9N8, MTSS2, AHDC1, PTN23, TRAK1, SRSF1, CHD4, DLGP3, NUP98, NYAP1, KCC2D, AT1A3, AT1A2, NFRKB, RIGI, MAGI1, WDFY3, TACC1, GGYF2, PF21A, KDM3B, CNOT1, LARP1, Q6ZQB7, NU188, Q6ZQJ9, Q6ZQK4, RS9, RL10, IF2A, SC6A5, SEM6D, 2AAA, EEIG1, MTCH2, PICAL, MRO2B, SCN4B, PLPR4, HNRPQ, TBB2A, SMAP2, Q7TNS5, PLPR3, MBB1A, LNP, TPPP, ATX2L, OTUB1, EXOS3, MAP6, ELP1, SI1L2, LRRC7, ERBIN, PHF24, R3HD2, NAV3, AGRL3, Q80TS6, AUXI, MADD, AVL9, PUM1, UBP8, NU214, SEPT9, NAA15, CAMP3, FA98B, TDRKH, EPN1, TMCC2, AGFG2, UBP2L, Q80X68, C2C2L, FLNB, LRRT4, WNK3, PRIC2, CNKR2, ZN598, SHAN2, AGRB3, Q80ZX0, ZFYV1, MAST4, RHG32, ENTP3, LPP, PEF1, ACTBL, TET3, MYPT2, IF4B, SYAC, F168A, TBL1R, TB10B, CSTP1, CARF, TGO1, FRM4A, SYIM, ANS1B, DLGP2, ZNT6, RCC2, ABLM2, LSS, UNC80, NOE2, CF015, EMSY, ODP2, GGA3, SYLC, DMXL2, IMP2L, CLAP2, LIPA2, ASPH, CNOT4, FLNA, F163B, GEPH, CREST, KCC1D, PGES2, KANK2, GEMI5, IFFO1, OSBL6, YTHD3, TM266, POGZ, LACC1, MAP1S, A16L1, SI1L1, PP4R4, MYO9A, THOP1, RBM14, Q8C2R1, CNOT2, Q8C6E9, CC134, ANK2, ELFN1, DIDO1, NHSL1, WDR37, DCTN4, SYNPO, BCAS3, VCIP1, Q8CE98, TAB1, SCYL2, NED4L, SYEP, F193A, GNAL, OGT1, NAV1, SYNJ1, RPGF2, EP400, PHC3, P66A, TBCE, VWF, STAU2, LIN7A, TBC23, ZBT20, RTN1, HS12A, DNM1L, UNC5B, UNC5A, ANLN, AGFG1, MATR3, Q8K314, AHI1, NDUS8, I2BPL, PREP, ABLM1, EIF3L, ERF3A, HNRPL, IQEC1, DOCK7, DC1L1, SPART, BST2, RFIP5, AT2A1, NUP35, LUZP1, MAVS, MYH9, PARN, AT1A1, SIR2, SNRK, ZDHC5, CC50A, AMOT, AGAP3, MARK1, Q8VHM5, FLNC, SFPQ, CPIN1, WDR13, BACH, S12A5, RAB14, ACLY, MIC25, ATPG, DDX1, SH3L3, UBAP2, NCOA5, CSDE1, FRS3, ZFN2B, DLG2, PTBP2, SRGP1, TMLH, DYST, SYUB, ELOV6, ALS2, TADBP, TBB6, CLIP1, LRC59, K2C5, UBXN1, SIR1, SPRE1, PAWR, MED1, MEP50, STML2, UBP11, NONO, RRAGC, VMA5A, MAOM, DCTN2, NEUA, DDAH2, DNJA3, TRXR3, RB6I2, SRRT, DSRAD, Q99NC2, RIMS1, ANR17, NU155, NTRI, RRBP1, ZN318, TRI33, ATP5L, RL17, GLOD4, DUT, SDHB, GLRX3, IFM3, NECP1, OCAD1, RRP44, TBB2B, DDAH1, YIF1B, ROA0, NIP7, MPPB, CYBP, RL11, TECR, CHTOP, SERB1, QCR1, NNRD, GARS, TOM70, RS19, SYRC, CNDP2, TMEDA, ODO2, DLGP1, TBB4A, IDH3A, IPYR, RL37, FIP1, TIM50, EF1G, RM17, GSDMD, DDA1, F135B, TM263, CNN3, PLIN3, PGAM1, XRN2, MYPT1, DJC10, KC1D, GNAI3, PUR6, S38A3, NDUBA, CRIP2, TSC1, RAI14, NBEA, TCF20, SORC2, DPYL5, TBB3, RBP2, ARHG7, RTN3, SPN90, RBCC1, PSMG2, DDX24, CLD12, PALLD, ELF2, TMOD3, NUDT3, COPB, NUP50, DDX21, TULP4, FLII, RPF2, CCG3, TBA8, IQGA1, NECT1, ADRM1, FMN2, PALS1, DCLK1, BAG3, CUL3, MINK1, REEP6, TRXR1, SYGP1, SON, APBB1, DREB, SPY2, MACF1, ULK2, ZBP1, TOM40, ADDA, GOGA5, DNJB1, MAP1A, PCLO, GAB1, RIPK3, NPAS3, SH2D3, NUBP2, ZEB2, SYT7, DEST, TEBP, SRS10, RPGR, PR40A, KHDR3, TPSN, CDYL, KAD2, TEN1, PDC6I, CHIP, IF4H, COR1B, COR1C, TNIP1, GANP, ARC, MPP2, SHAN1, VAPA, GSK3B, DEMA, E41L3, JIP1, GBP2, CAD20, P5CS, LAT1, DYR1B, MD2L1, SAE2, APCL, SYVC, MTMR1, MECP2, E41L1, SUCB1, HDAC6, GRIA4, HOME1, OSB10
Download
Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 2011 108(23) 21606357
Abstract:
The monosaccharide addition of an N-acetylglucosamine to serine and threonine residues of nuclear and cytosolic proteins (O-GlcNAc) is a posttranslational modification emerging as a general regulator of many cellular processes, including signal transduction, cell division, and transcription. The sole mouse O-GlcNAc transferase (OGT) is essential for embryonic development. To understand the role of OGT in mouse development better, we mapped sites of O-GlcNAcylation of nuclear proteins in mouse embryonic stem cells (ESCs). Here, we unambiguously identify over 60 nuclear proteins as O-GlcNAcylated, several of which are crucial for mouse ESC cell maintenance. Furthermore, we extend the connection between OGT and Polycomb group genes from flies to mammals, showing Polycomb repressive complex 2 is necessary to maintain normal levels of OGT and for the correct cellular distribution of O-GlcNAc. Together, these results provide insight into how OGT may regulate transcription in early development, possibly by modifying proteins important to maintain the ESC transcriptional repertoire.
Download
Page 1 of 1