REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard M, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International journal of molecular sciences 2021 22(17) 34502162
Abstract:
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
O-GlcNAc proteins:
A0A096MJ01, A0A096MK30, A0A096MKD4, A0A096P6L8, A0A0G2JSH9, A0A0G2JSP8, A0A0G2JSR0, A0A0G2JSU7, A0A0G2JSW3, A0A0G2JTG7, A0A0G2JTP6, A0A0G2JV65, A0A0G2JVG3, A0A0G2JVH4, A0A0G2JW41, A0A0G2JW94, A0A0G2JWK2, A0A0G2JWS2, A0A0G2JYK0, A0A0G2JZF0, A0A0G2K0F5, A0A0G2K3K2, A0A0G2K3Z9, A0A0G2K401, A0A0G2K5P5, A0A0G2K654, A0A0G2K719, A0A0G2K7F7, A0A0G2K9P4, A0A0G2K9Q9, A0A0G2KAK2, A0A0G2KB63, A0A0H2UHM5, A0A0H2UHQ9, A0A0H2UHZ6, A0A0H2UI36, A0A0U1RRV7, ROA2, B0BNG3, CAH1, SCOT1, B2RYW3, C0JPT7, D3ZCV0, D3ZG43, D3ZIC4, D3ZQM0, D3ZUB0, D3ZZ68, D3ZZN3, D4A0T0, D4A5E5, D4A6Q4, SYNP2, D4A7X7, D4A8X8, D4AA63, D4ACC2, F1LM30, F1LM47, F1LMP9, DESP, F1LP05, F1LP30, F1LSC3, S2512, S2513, F1M3H8, F1M820, F1M865, F1M944, F1M953, F1MAA7, F1MAF7, G3V6E1, G3V6H0, G3V6H5, G3V6P7, G3V6S0, G3V6T7, G3V6Y6, G3V7C6, G3V7J0, G3V826, G3V885, G3V8B0, G3V8L3, G3V8V3, G3V9A3, G3V9U2, M0R5J4, M0R735, M0R757, M0R7S5, M0R9L0, PRDX6, C1QBP, HSPB2, ACOT2, HCD2, PARK7, MDHC, AATM, HBA, FIBG, GPX1, ROA1, MDHM, LDHA, PDIA1, G3P, GSTP1, ALDOA, EF2, AT1A1, BIP, RPN1, ODP2, MLRV, KCRS, HS71A, ATPB, CLH1, AT2A2, DMD, ALDH2, KPYM, AL1A7, ETFA, A1I3, CAH3, FIBB, ECHM, ACADL, PGAM2, MYL3, PGK1, ACLY, THIL, ACSL1, CPT2, CSK21, NDUV2, AT5F1, NDKB, NB5R3, IGG2A, IGG2B, LAC2, UCRI, SDHB, TNNI3, CRYAB, PPIB, PGAM1, RPN2, CAH2, TCPA, VIME, PEBP1, ATP5H, EZRI, QCR2, HS90B, 1433B, ATPG, CRIP2, RSSA, CAV1, LDHB, HSPB1, COF1, TERA, DPYL2, TPIS, DESM, ODPB, TNNT2, AL1A1, ES1, IDHP, MYPC, PSA6, ARF3, 1433G, 1433E, EF1A2, H4, RAN, RS3, AP2B1, RL40, HSP7C, CH60, PHB1, ACTC, 1433T, TBA1A, 1433F, TBB5, NUP54, VDAC2, HS90A, EFTU, PNPH, HSPB6, PTBP1, H2B1, MUG1, ATPO, ANXA2, ADT2, K2C8, PRRC1, NIT2, Q498N4, ACSF2, H2A3, K2C6A, Q4G079, AGFG1, Q4PP99, Q4V8E1, EHD2, Q52KS1, NDUAA, Q5BJZ3, Q5D059, Q5M9H2, Q5RJR9, UBA1, Q5XFV4, LPP, Q5XI38, GDIR1, ODO1, TBA4A, Q5XIH3, ECHB, PDLI5, A1M, CPT1B, NDUS2, ECHA, ENPL, NDUS1, Q66HF3, MAVS, AMPL, ETFB, QCR1, K1C42, Q6IFU9, K1C14, K1C15, K1C13, K1C10, K2C75, K2C1, HNRPU, Q6IMZ3, TS101, RAB1A, PLAK, K2C5, DLDH, SYWC, TBA1B, Q6P9Y4, Q6PDV6, CNDP2, ROA3, CACP, DEST, Q7TQ70, CISY, Q91XN6, SDHA, IDH3A, ACON, AIFM1, MYG, TGM2, HCDH, VDAC1, SC31A
Download
Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. Journal of the American Chemical Society 2008 130(35) 18683930
Abstract:
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide-alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc.
Page 1 of 1