REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Fourneau J, Cieniewski-Bernard C, Canu MH, Duban-Deweer S, Hachani J, Bastide B, Dupont E. Optimization of 2-DE and multiplexed detection of O-GlcNAcome, phosphoproteome and whole proteome protocol of synapse-associated proteins within the rat sensorimotor cortex. Journal of neuroscience methods 2020 343 32574643
Abstract:
Several studies have shown the importance of phosphorylation, O-GlcNAcylation and their interplay in neuronal processes.
O-GlcNAc proteins:
NFL, SYT1, ACTB, NDUS8, NDUA8, VDAC1
Download
Akimoto Y, Yan K, Miura Y, Tsumoto H, Toda T, Fukutomi T, Sugahara D, Kudo A, Arai T, Chiba Y, Kaname S, Hart GW, Endo T, Kawakami H. O-GlcNAcylation and phosphorylation of β-actin Ser(199) in diabetic nephropathy. American journal of physiology. Renal physiology 2019 317(5) 31566433
Abstract:
The function of actin is regulated by various posttranslational modifications. We have previously shown that in the kidneys of nonobese type 2 diabetes model Goto-Kakizaki rats, increased O-GlcNAcylation of β-actin protein is observed. It has also been reported that both O-GlcNAcylation and phosphorylation occur on Ser199 of β-actin. However, their roles are not known. To elucidate their roles in diabetic nephropathy, we examined the rat kidney for changes in O-GlcNAcylation of Ser199 (gS199)-actin and in the phosphorylation of Ser199 (pS199)-actin. Both gS199- and pS199-actin molecules had an apparent molecular weight of 40 kDa and were localized as nonfilamentous actin in both the cytoplasm and nucleus. Compared with the normal kidney, the immunostaining intensity of gS199-actin increased in podocytes of the glomeruli and in proximal tubules of the diabetic kidney, whereas that of pS199-actin did not change in podocytes but decreased in proximal tubules. We confirmed that the same results could be observed in the glomeruli of the human diabetic kidney. In podocytes of glomeruli cultured in the presence of the O-GlcNAcase inhibitor Thiamet G, increased O-GlcNAcylation was accompanied by a concomitant decrease in the amount of filamentous actin and in morphological changes. Our present results demonstrate that dysregulation of O-GlcNAcylation and phosphorylation of Ser199 occurred in diabetes, which may contribute partially to the causes of the morphological changes in the glomeruli and tubules. gS199- and pS199-actin will thus be useful for the pathological evaluation of diabetic nephropathy.
O-GlcNAc proteins:
ACTB
Download
Akimoto Y, Miura Y, Toda T, Wolfert MA, Wells L, Boons GJ, Hart GW, Endo T, Kawakami H. Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4. Clinical proteomics 2011 8(1) 21933451
Abstract:
The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes.
O-GlcNAc proteins:
ATPB, PYC, ACTB, TBA1A, MYH9, ACTN4
Download
Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. Journal of the American Chemical Society 2008 130(35) 18683930
Abstract:
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide-alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc.
Page 1 of 1