REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Zhu WZ, Palazzo T, Zhou M, Ledee D, Olson HM, Paša-Tolić L, Olson AK. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PloS one 2022 17(10) 36288343
Abstract:
Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.
O-GlcNAc proteins:
MA7D1, CAVN4, OTUD4, FIBA, TRDN, DPYL2, CLCA, MYH11, KNG1, PRDX6, AKAP1, DLDH, NDUBB, GSTO1, CASQ2, RL21, PHB2, ECH1, NDUA1, TIM44, CAVN1, AKAP2, SLK, NIPS2, AT2A2, PGAM2, EF1B, ATX2, NMT1, XIRP1, PDLI1, MYPC3, SNX3, DC1I2, PLIN4, ROA2, RAD, CLPP, TOM1, COX1, COX2, CAH2, CO3, IGJ, KV2A7, IGKC, GCAB, IGHG1, IGH1M, B2MG, HBA, HBB1, LAMC1, FABP4, CFAB, MYG, ALDOA, ANF, AATC, AATM, TBA1B, LDHA, G6PI, TRY2, TTHY, KCRM, ANXA2, ALBU, SPA3K, ENPL, APOE, MDHM, ITB1, PDIA1, NUCL, PGK1, FRIH, MYL3, SODM, NDUB1, ANXA1, EF1A1, CATB, TAU, THIO, GSTM1, H2B1F, H10, CO1A1, FABPH, HS90B, DMD, PFKAL, COX5A, RL7A, GELS, MYH3, AT1B1, GLUT4, RL7, MDHC, RSSA, CALR, HSPB1, ANXA6, GLNA, B4GT1, GSTM2, H12, LDHB, SPTN1, G3P, ENOA, HXK1, PPIA, TPIS, BASI, COF1, RL13A, SERPH, COX5B, COX41, BIP, PRDX3, VIME, CYTC, ENOB, TGM2, EIF3A, CBX3, CXA1, PIMT, CRYAB, CATA, CAPG, GSTA4, RS2, TLN1, MOES, RADI, CTNA1, DHE3, FKB1A, MAP4, RL3, H2AX, PDIA3, PABP1, FRIL1, FETUA, DESM, AIMP1, SCP2, LA, ANT3, RANG, MIF, PTN11, HSPB7, ODPA, CALX, PRDX1, RL12, RL18, FBLN2, HMGCL, GRP75, CAP1, TKT, RL28, ACSL1, ECI1, H14, H11, H15, H13, ALDR, COF2, ACADM, PRS7, ADX, ALDH2, CAPZB, RL6, RL29, CACP, RL13, ANXA5, TBCA, LMNA, CX7A2, TNNI3, ADT1, ROA1, PCY1A, CAV1, ODBA, DHB8, CSRP3, ACADV, PA2G4, TNNT2, ICAL, ACADL, CAV3, MLRV, ADT2, LUM, KPYM, NDUS6, CPT2, RL10A, ODB2, CCHL, MOT1, IDHP, STOM, ADK, ATPK, ACYP2, ATP68, ATP5E, AT5G2, CX6B1, CX7A1, COX7B, CYB5, UBP5, ATPB, WFS1, EF1D, ACTN4, EF2, OPA1, TPM1, B2L13, PCBP1, ACTB, RS20, PPLA, UB2D3, UBC12, UBE2N, RL26, RL27, SUMO2, HNRPK, 1433G, RS7, RS8, 1433E, RS14, RS18, RS11, RS13, DLRB1, EF1A2, RS4X, RL23A, RS6, H4, RAN, RS15, RS25, RS30, RL30, CYC, RL31, RS3, RL32, RL8, FBX40, YBOX1, RS27A, HSP7C, MPC1, CH60, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, ACTH, RS12, RS10, RL22, ACTC, UB2L3, 1433T, TBA4A, TBB4B, H31, IMB1, PEBP1, HINT1, IDHG1, NACAM, TCPD, SGCD, SGCA, WNK1, RL19, SRSF3, H32, RS3A, G3BP2, ANXA4, COQ7, FUMH, G3BP1, LAMA4, QCR6, PRDX5, APOA1, CO1A2, NDKB, TERA, UBA1, MYH6, ATPA, KCRB, CO6A1, PGBM, EMAL1, ATP5I, CLUS, ANXA7, ACADS, CD36, NEBL, PERM1, TRI72, HSDL2, HP1B3, PRC2C, TM38A, Q3TV00, SRSF6, FUBP2, SDHF1, EI3JA, LIMC1, AAK1, NDUB6, MCCB, COBL1, SLMAP, SRBS2, K22O, CPZIP, NDUF2, MYPN, HSPB6, MLIP, IASPP, TM1L2, ODO1, LAMA2, STIP1, REEP5, VDAC2, VDAC1, COQ8A, LAP2B, PRDX2, HCFC1, LAMB2, HSP74, HCDH, FBN1, FXR1, KTN1, GDIB, DDX5, KINH, LASP1, PZP, NPM, NNTM, SNRPA, SPTB2, SPEG, SRBS1, DBNL, NDUA4, FKBP3, IF4G2, ZYX, CAVN2, SPRE, SF01, CD34, CH10, H2A2B, H2A2C, NQO1, VINC, EI3JB, CLH1, H2A2A, GPSM1, IF4G1, KCRS, LPPRC, AT1A2, CAND2, RS9, CMYA5, FHOD3, ATPMK, MIC27, MSRB2, NP1L4, MTCH1, MTCH2, PICAL, NDUAC, HNRPQ, HUWE1, LC7L2, MIC10, NEXN, SRCA, LNP, CLAP1, SRA1, UBP2L, NRAP, BDH, GLRX5, ATPF1, EFTU, H2A3, LPP, ROA3, MYPT2, IF4B, ECHM, RCN3, SYIM, EIF2A, ODPX, EEA1, ODP2, ECHA, COQ3, RL24, FLNA, TIDC1, PLIN5, SYP2L, SSDH, THIM, MIC60, PABP2, BOLA3, SYEP, LONM, H2A1F, H2A1H, H2A1K, SEPT8, PGP, AL4A1, SLAI2, PDLI5, PYGB, PAK2, AFG32, EIF3B, FIBB, COXM2, COQ9, SDHA, SIR5, ACD10, NDUS8, NNRE, HIBCH, THIL, MARE2, QCR9, H2AJ, DC1L1, SPART, NAR3, MIC13, CLYBL, PP14C, TXLNB, MAVS, MYH9, VIGLN, PSMD2, AT1A1, LMCD1, HNRPU, MPCP, FLNC, SFPQ, NDUS1, MIC25, ATPG, SH3L3, UBAP2, NDUS2, EIF3H, CISD1, HEMO, EGLN1, L2HDH, RPN1, NDUV1, GRHPR, MYH7, PCCA, UGPA, ETFD, THIKA, TRFE, TOIP1, MACD1, CLIP1, K2C5, UBXN1, ALPK3, RT02, CPT1B, TALDO, ROAA, THTM, STML2, PACN3, ECHB, PLST, ACON, DCTN2, NAMPT, PPIF, NDUAA, ETFA, GRPE1, PARK7, NDUS5, DNJA3, PCCB, MCCA, PPR3A, EH1L1, ACS2L, RTN4, RRBP1, GDIR1, NDUA5, COX6C, TOM22, ATP5L, NDUB2, COXM1, RM24, NDUC2, DECR, QCR8, NDUA2, FIS1, SDHB, NDUB4, NDUB5, NDUB9, AT5F1, RS21, ACO13, 1433B, CYB5B, KGD4, NDUA6, NDUB3, PSMD9, RL14, NDUB7, M2OM, UCRI, MIC19, OCAD1, PIN4, NDUS4, RT28, PAIRB, SPCS2, SSBP, QCR1, NSF1C, C560, CISY, TOM70, RS19, ODPB, HNRPM, PGM1, SCOT1, CY1, HINT2, GAL3A, MCEE, CHCH2, ERP44, NOL3, MMAB, ODO2, COA3, RT33, ATPD, NDUB8, NDUV2, IDH3A, F162A, ARMC1, RL37, QCR7, RL4, EF1G, EFHD2, PRS37, ATPO, QCR2, PGAM1, MYPT1, LNEBL, TELO2, NDUA9, NDUS7, NDUA8, NDUBA, NDUS3, CRIP2, ETFB, ATP5H, MIC26, MMSA, EHD4, NDUAD, POPD1, HRG, PALLD, JPH2, IVD, NHRF2, PALMD, ACTN2, AK1A1, DBLOH, MYOZ2, PDK2, HSPB8, LDB3, HIG1A, BAG3, AUHM, MACF1, VAPB, NDRG2, ACOT2, QKI, PRS30, UBQL2, H2AY, GLYG, ACOX1, DEST, KAD1, PSA1, KAD2, KAD3, CAD13, PYGM, IF4H, COR1B, SUCA, ECI2, SH3BG, TAGL2, PACN2, EHD1, AIFM1, NDUA7, BAG6, USO1, HNRPC, PLM, LETM1, SUCB2, SUCB1, K2C6B
Species: Mus musculus
Download
Ji S, Kang JG, Park SY, Lee J, Oh YJ, Cho JW. O-GlcNAcylation of tubulin inhibits its polymerization. Amino acids 2011 40(3) 20665223
Abstract:
The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins is an abundant and reversible modification that involves many cellular processes including transcription, translation, cell proliferation, apoptosis, and signal transduction. Here, we found that the O-GlcNAc modification pattern was altered during all-trans retinoic acid (tRA)-induced neurite outgrowth in the MN9D neuronal cell line. We identified several O-GlcNAcylated proteins using mass spectrometric analysis, including α- and β-tubulin. Further analysis of α- and β-tubulin revealed that O-GlcNAcylated peptides mapped between residues 173 and 185 of α-tubulin and between residues 216 and 238 of β-tubulin, respectively. We found that an increase in α-tubulin O-GlcNAcylation reduced heterodimerization and that O-GlcNAcylated tubulin did not polymerize into microtubules. Consequently, when O-GlcNAcase inhibitors were co-incubated with tRA, the extent of neurite outgrowth was decreased by 20% compared to control. Thus, our data indicate that the O-GlcNAcylation of tubulin negatively regulates microtubule formation.
Species: Mus musculus
Download
Page 1 of 1