REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Song J, Liu C, Wang X, Xu B, Liu X, Li Y, Xia J, Li Y, Zhang C, Li D, Sun H. O-GlcNAcylation Quantification of Certain Protein by the Proximity Ligation Assay and Clostridium perfringen OGAD298N(CpOGAD298N). ACS chemical biology 2021 16(6) 34105348
Abstract:
O-GlcNAcylation is an O-linked β-N-acetyl-glucosamine (O-GlcNAc)-monosaccharide modification of serine or threonine in proteins that plays a vital role in many critical cellular processes. Owing to its low molecular weight, uncharged property, and difficulty in distinguishing from β-N-acetyl-galactosamine (GalNAc), the lack of high specificity and avidity tools and sophisticated quantification methods have always been the bottleneck in analyzing O-GlcNAc functions. Here, we compared glycan array data of the mutant of Clostridium perfringen OGA (CpOGAD298N), O-GlcNAc antibody CTD110.6, and several lectins. We found that CpOGAD298N can effectively distinguish GlcNAc from GalNAc. Glycan array analysis and isothermal titration calorimetry (ITC) show that CpOGAD298N has a GlcNAc specific binding characteristic. CpOGAD298N could be used in far-western, flow cytometry analysis, and confocal imaging to demonstrate the existence of O-GlcNAc proteins. Using the CpOGAD298N affinity column, we identified 84 highly confident O-GlcNAc modified peptides from 82 proteins in the MCF-7 cell line and 33 highly confident peptides in 33 proteins from mouse liver tissue; most of them are novel O-GlcNAc proteins and could not bind with wheat germ agglutinin (WGA). Besides being used as a facile enrichment tool, a combination of CpOGAD298N with the proximity ligation assay (PLA) is successfully used to quantify O-GlcNAc modified histone H2B, which is as low as femtomoles in MCF-7 cell lysate. These results suggest that CpOGAD298N is a specific tool for detection (far-western, flow cytometry analysis, and confocal imaging) and enrichment of O-GlcNAcylated proteins and peptides, and the CpOGAD298N-PLA method is useful for quantifying certain O-GlcNAc protein.
Download
Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J, Hovasse A, Schaeffer-Reiss C, Cianférani S, Rolando C, Bray F, Duez H, Eeckhoute J, Lefebvre T, Staels B, Lefebvre P. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America 2018 115(47) 30397120
Abstract:
The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.
O-GlcNAc proteins:
A4D111, POTEF, A5GZ75, AXA2L, P121C, A9Z0R7, EIFCL, C3UMV2, F1JVV5, I6TRR8, MYO1C, IF2B3, DDX3X, TCRG1, OPLA, XPO1, SC16A, SET1A, OGT1, EIF3D, DDX3Y, DHX15, PRP4, SERA, PSMD3, HNRPR, ACTN4, MYO1B, AKAP8, HNRPQ, UGDH, USO1, WDR1, ANR17, GGCT, LX12B, FLNB, PR40A, SF3B1, SPB7, NU155, KRT38, SC24D, GLSK, SC31A, ELP1, SMC2, AGM1, UTS2, BAG4, SC24A, SC24B, AP2A1, LDHA, AL1A1, PGK1, A2MG, CO3, CYTA, KV117, IGHG1, IGHA1, APOE, APOC2, FIBG, TFR1, TRFE, CATA, ALDOA, TBB4A, G3P, HSPB1, RPN1, RPN2, AT1A1, ARGI1, ALDH2, S10A8, ADT2, GELS, ATPB, APOA4, ENOA, PYGL, G6PI, TPM3, PDIA1, CATD, ANXA2, CAN1, TBB5, HS90A, SP1, CO1A2, HS90B, PO2F2, GSTP1, VILI, ANXA4, PARP1, LKHA4, ATX1L, POTEI, UBB, UBC, SAA2, HS71A, HS71B, IGG1, TBA3C, TBA3D, THIO, CH60, BIP, HSP7C, PYGB, PYGM, G6PD, PYC, C1TC, NFH, IMDH2, XRCC6, XRCC5, AT1A3, EF2, PDIA4, P4HA1, ENOB, GFAP, ENPL, IDE, PO2F1, HNRPL, PLAK, DESP, AT2A2, HSP76, DDX5, LEG3, TCPA, RL7, VINC, E2AK2, ITIH2, ANXA7, HNF1A, FILA, CD11B, FLNA, VDAC1, TGM2, PUR2, UBA1, NDKB, TGM1, EST1, SFPQ, SAHH, MCM3, ATPA, PTBP1, SYVC, ABCD3, GRN, TKT, SPB3, AL4A1, PDIA3, KPYR, RPB2, AKT1, PUR9, HNRH1, CASPE, 1433S, S10AB, PRDX2, MCM4, MCM7, HS71L, CTNB1, IRS1, GDE, MYH9, FUS, SPB5, NUP62, TALDO, GRP75, CAPG, TCPZ, STAT3, MDHC, MDHM, ECHA, GARS, SYIC, HUTH, LPPRC, MATR3, MSH2, VDAC2, SYQ, LEG7, COPD, SPB4, TCPE, AL9A1, LMAN1, FMO5, TCPG, SYAC, RBM25, KLK7, DYN2, TCPQ, TCPD, RAB7A, HCFC1, KS6A3, HNRPM, HXK2, CAZA1, NUP98, ACLY, COPB, COPA, SC24C, SYRC, SYYC, UBP14, HSP72, P5CS, XPO2, TERA, MTP, AF17, PSA, HNRH2, EIF3B, SYMC, NU107, EPIPL, TPIS, ACTB, IF4A1, HNRPK, 1433G, PRS4, ACTA, H4, RS27A, RL40, 1433Z, RACK1, ACTG, ACTH, ACTC, ACTS, TBA1B, TBA4A, TBB4B, PRKDC, DCD, VIGLN, CLH1, HNRPU, FABP5, MSHR, EWS, SEMG2, DSG1, SP3, PLOD1, EF1A2, GFPT1, PRDX1, KHDR1, TGM3, DHX9, LG3BP, DSC1, ILF3, TRAP1, PAK2, PSMD2, PABP4, PICAL, PKP1, BLMH, SNTB1, TBB2A, VEZF1, TRI29, UBP2L, LY6D, SRC8, PDIA5, HS902, EPN4, SMC1A, GANAB, MVP, PLEC, NONO, SC23A, SC23B, CDSN, JHD2C, CYTM, DPYL2, PCKGM, TKFC, Q53G76, Q58FF2, Q59EA0, ZN326, FILA2, UBAP2, XP32, RBM26, EF1A3, ARID2, TBA3E, POTEE, SBSN, FBX50, Q70T18, Q71E78, TBA1A, SND1, NUP54, MYH14, PEG10, PRP39, TAXB1, CAND1, CARM1, PRSR1, SPA12, ANKH1, ASXL1, NUP93, RDHE2, Q8N6B4, PDPR, TNR6A, COP1, PDC6I, POF1B, ATX2L, DDX1, BAP1, TFG, RBP56, EVPL, DDX17, RENT1, FUBP2, UBP7, NCLN, H2B1A, WNK4, ZC3HA, SCYL1, SPB12, GSDMA, VPS35, PHF12, CIC, STRBP, VAT1, NUP88, ATX2, CPNE1, TCPH, TBA1C, DIDO1, HNRL1, TBB2B, NUP58, ACTBM, TB182, SP130, WNK1, AGO3, MCCB, MOV10, TNR6C, S10AE, DD19A, ATD3A, TBA8, UGGG1, IF2B1, CALL5, RRBP1, NXF1, CMC2, PO2F3, AGO2, AGO1, Q9UL79, ACSL5, DD19B, TNR6B, CD11A, EIF3L, SYFA, KLK5, RTCB, WNK2, PKP3, HYOU1, SNX9, COPG1, IF2B2, S23IP
Species: Homo sapiens
Download
Li S, Zhu H, Wang J, Wang X, Li X, Ma C, Wen L, Yu B, Wang Y, Li J, Wang PG. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Electrophoresis 2016 37(11) 26853435
Abstract:
O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an essential protein post-translational modification in a range of organisms. It is involved in various cellular processes such as nutrient sensing, protein degradation, gene expression, and is associated with many human diseases. Despite its importance, identifying O-GlcNAcylated proteins is a major challenge in proteomics. Here, using peracetylated N-azidoacetylglucosamine (Ac4 GlcNAz) as a bioorthogonal chemical handle, we described a gel-based mass spectrometry method for the identification of proteins with O-GlcNAc modification in A549 cells. In addition, we made a labeling efficiency comparison between two modes of azide-alkyne bioorthogonal reactions in click chemistry: copper-catalyzed azide-alkyne cycloaddition (CuAAC) with Biotin-Diazo-Alkyne and stain-promoted azide-alkyne cycloaddition (SPAAC) with Biotin-DIBO-Alkyne. After conjugation with click chemistry in vitro and enrichment via streptavidin resin, proteins with O-GlcNAc modification were separated by SDS-PAGE and identified with mass spectrometry. Proteomics data analysis revealed that 229 putative O-GlcNAc modified proteins were identified with Biotin-Diazo-Alkyne conjugated sample and 188 proteins with Biotin-DIBO-Alkyne conjugated sample, among which 114 proteins were overlapping. Interestingly, 74 proteins identified from Biotin-Diazo-Alkyne conjugates and 46 verified proteins from Biotin-DIBO-Alkyne conjugates could be found in the O-GlcNAc modified proteins database dbOGAP (http://cbsb.lombardi.georgetown.edu/hulab/OGAP.html). These results suggested that CuAAC with Biotin-Diazo-Alkyne represented a more powerful method in proteomics with higher protein identification and better accuracy compared to SPAAC. The proteomics credibility was also confirmed by the molecular function and cell component gene ontology (GO). Together, the method we reported here combining metabolic labeling, click chemistry, affinity-based enrichment, SDS-PAGE separation, and mass spectrometry, would be adaptable for other post-translationally modified proteins in proteomics.
O-GlcNAc proteins:
AXA2L, EIFCL, MYO1C, P2Y10, IPO5, PLOD2, DDX3X, ZN197, XPO1, PPM1G, HNRPR, ACTN4, SNG2, OGA, UGDH, BRD4, FLNB, U520, IDHC, TOM70, K2C75, LDHA, AL1A1, DHE3, PGK1, PIGR, IGHA1, K1C14, K2C6A, LMNA, ALBU, TRFL, K2C6B, K2C1, AT1A1, ALDH2, S10A8, ITB1, K1C18, K2C8, ENOA, G6PI, HYEP, PDIA1, TBB5, SYEP, HS90A, 4F2, HS90B, VIME, K2C7, K1C16, RSSA, DLDH, PARP1, LIGO3, UBB, HS71A, CH60, BIP, HSP7C, PYGB, G6PD, C1TC, K2C3, ACTN1, PEPD, XRCC5, RINI, EF2, K1C10, K1C13, K2C5, PDIA4, P4HA1, GLU2B, KPYM, ENPL, HNRPL, PLAK, DESP, NCPR, AT2A2, NAGAB, HSP76, CAN2, NUCL, IF2B, ANXA7, FLNA, TGM2, PUR6, UBA1, SAHH, RPB1, ATPA, MOES, EF1G, CALR, MAP4, CALX, ITPI2, TKT, PDIA3, 2AAA, AL3A1, CPSM, QCR1, HNRH1, STIP1, HSP74, K1C9, MYH9, MYH10, K22E, PRS7, SRBP1, GRP75, IF4A3, IF2G, LPPRC, MATR3, AL3B1, NAMPT, UBP5, KI67, MAP1B, UTRN, IQGA1, TCPE, K2C6C, AL9A1, NASP, FAS, TCPG, EFTU, SYAC, F10A1, TCPQ, TCPD, 6PGD, HNRPM, ACLY, SYRC, UBP14, S12A2, TERA, ECHB, NP1L1, EIF3B, SYMC, EIF3E, ACTB, UB2D3, ARP3, HNRPK, PRS4, ACTC, EF1A1, TBA1B, TBB4B, KRT85, PRKDC, DCD, MPCP, CLH1, HNRPU, SPTB2, PFKAP, FKBP4, AKA12, IF4G1, K1C17, CKAP4, DHX9, RBBP4, TP53B, TRAP1, PSMD2, SQSTM, TBB3, SPTN1, HNRPD, EIF3A, GANAB, GOGB1, IMB1, NUMA1, PDIA6, PLEC, PCM1, K1H1, KCC4, DREB, TRXR1, HKDC1, LRRF1, FILA2, BIG3, CROCC, BROX, K2C79, K2C80, PRP8, CCD81, SPT6H, SND1, MYH14, CC190, HORN, UNC80, GHDC, CDRT4, TXND5, NDRG1, GCN1, TNPO1, SIPA1, ERO1A, ODAD4, VPS35, ERP44, EHD4, SLK, RTN4, DDX21, SYFB, MYOF, RRBP1, SRP68, ACINU, SRRM2, PA2G4, MA2B2, RTCB, TLN1
Species: Homo sapiens
Download
Leung MC, Hitchen PG, Ward DG, Messer AE, Marston SB. Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked β-N-acetylglucosamine-substituted protein in human heart myofibrils. The Journal of biological chemistry 2013 288(7) 23271734
Abstract:
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.
Species: Homo sapiens
Download
Page 1 of 1