REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard M, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International journal of molecular sciences 2021 22(17) 34502162
Abstract:
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
O-GlcNAc proteins:
A0A096MJ01, A0A096MK30, A0A096MKD4, A0A096P6L8, A0A0G2JSH9, A0A0G2JSP8, A0A0G2JSR0, A0A0G2JSU7, A0A0G2JSW3, A0A0G2JTG7, A0A0G2JTP6, A0A0G2JUT0, A0A0G2JV65, A0A0G2JVG3, A0A0G2JVH4, A0A0G2JW41, A0A0G2JW94, A0A0G2JWK2, A0A0G2JWS2, A0A0G2JYK0, A0A0G2JZF0, A0A0G2K0F5, A0A0G2K3K2, A0A0G2K3Z9, A0A0G2K401, A0A0G2K477, A0A0G2K5I9, A0A0G2K5P5, A0A0G2K654, A0A0G2K719, A0A0G2K7F7, A0A0G2K8H0, A0A0G2K9P4, A0A0G2K9Q9, A0A0G2KAK2, A0A0G2KB63, A0A0H2UHM5, A0A0H2UHQ9, A0A0H2UHZ6, A0A0H2UI36, A0A0U1RRV7, ROA2, B0BNG3, CAH1, SCOT1, B2RYW3, C0JPT7, D3ZCV0, D3ZG43, D3ZIC4, D3ZQM0, D3ZUB0, D3ZZ68, D3ZZN3, D4A0T0, D4A5E5, D4A6Q4, SYNP2, D4A7X7, D4A8X8, D4AA63, D4ACC2, F1LM30, F1LM47, F1LMP9, F1LMV6, F1LP05, F1LP30, F1LSC3, F1LX07, F1LZW6, F1M3H8, F1M820, F1M865, F1M944, F1M953, F1MAA7, F1MAF7, G3V6E1, G3V6H0, G3V6H5, G3V6P7, G3V6S0, G3V6T7, G3V6Y6, G3V7C6, G3V7J0, G3V826, G3V885, G3V8B0, G3V8L3, G3V8V3, G3V9A3, G3V9U2, M0R5J4, M0R735, M0R757, M0R7S5, M0R9L0, PRDX6, C1QBP, HSPB2, ACOT2, HCD2, PARK7, MDHC, AATM, HBA, FIBG, GPX1, ROA1, MDHM, LDHA, PDIA1, G3P, GSTP1, ALDOA, EF2, AT1A1, BIP, RPN1, ODP2, MLRV, KCRS, HS71A, ATPB, CLH1, AT2A2, DMD, ALDH2, KPYM, AL1A7, ETFA, A1I3, CAH3, FIBB, ECHM, ACADL, PGAM2, MYL3, PGK1, ACLY, THIL, ACSL1, CPT2, CSK21, NDUV2, AT5F1, NDKB, NB5R3, IGG2A, IGG2B, LAC2, UCRI, SDHB, TNNI3, CRYAB, PPIB, PGAM1, RPN2, CAH2, TCPA, VIME, PEBP1, ATP5H, EZRI, QCR2, HS90B, 1433B, ATPG, CRIP2, RSSA, CAV1, LDHB, HSPB1, COF1, TERA, DPYL2, TPIS, DESM, ODPB, TNNT2, AL1A1, ES1, IDHP, MYPC, PSA6, ARF3, 1433G, 1433E, EF1A2, H4, RAN, RS3, AP2B1, RL40, HSP7C, CH60, PHB, ACTC, 1433T, TBA1A, 1433F, TBB5, NUP54, VDAC2, HS90A, EFTU, PNPH, HSPB6, PTBP1, H2B1, MUG1, ATPO, ANXA2, ADT2, K2C8, PRRC1, NIT2, Q498N4, ACSF2, H2A3, K2C6A, Q4G079, AGFG1, Q4PP99, Q4V8E1, EHD2, Q52KS1, NDUAA, Q5BJZ3, Q5D059, Q5M9H2, Q5RJN0, Q5RJR9, UBA1, Q5XFV4, LPP, Q5XI38, GDIR1, ODO1, TBA4A, Q5XIH3, ECHB, PDLI5, A1M, CPT1B, NDUS2, ECHA, ENPL, NDUS1, Q66HF3, MAVS, AMPL, ETFB, QCR1, K1C42, Q6IFU9, K1C14, K1C15, K1C13, K1C10, K2C75, K2C1, HNRPU, Q6IMZ3, TS101, RAB1A, PLAK, K2C5, DLDH, SYWC, TBA1B, Q6P9Y4, Q6PDV6, CNDP2, ROA3, CACP, DEST, Q7TQ70, CISY, Q91XN6, SDHA, IDH3A, ACON, AIFM1, MYG, TGM2, HCDH, VDAC1, SC31A
Download
Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015 64(10) 26109417
Abstract:
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
O-GlcNAc proteins:
MYH6, TPM1, MYL3, TNNI3, MYPC, ACTC
Download
Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, Vecoli C, Hart GW, Murphy AM. O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circulation research 2008 103(12) 18988896
Abstract:
In addition to O-phosphorylation, O-linked modifications of serine and threonine by beta-N-acetyl-D-glucosamine (GlcNAc) may regulate muscle contractile function. This study assessed the potential role of O-GlcNAcylation in cardiac muscle contractile activation. To identify specific sites of O-GlcNAcylation in cardiac myofilament proteins, a recently developed methodology based on GalNAz-biotin labeling followed by dithiothreitol replacement and light chromatography/tandem mass spectrometry site mapping was adopted. Thirty-two O-GlcNAcylated peptides from cardiac myofilaments were identified on cardiac myosin heavy chain, actin, myosin light chains, and troponin I. To assess the potential physiological role of the GlcNAc, force-[Ca(2+)] relationships were studied in skinned rat trabeculae. Exposure to GlcNAc significantly decreased calcium sensitivity (pCa50), whereas maximal force (F(max)) and Hill coefficient (n) were not modified. Using a pan-specific O-GlcNAc antibody, it was determined that acute exposure of myofilaments to GlcNAc induced a significant increase in actin O-GlcNAcylation. This study provides the first identification of O-GlcNAcylation sites in cardiac myofilament proteins and demonstrates their potential role in regulating myocardial contractile function.
O-GlcNAc proteins:
MYH6, MLRV, MYL3, TNNI3, ACTC
Download
Page 1 of 1