REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature chemical biology 2022 18(2) 34887587
Abstract:
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.