REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Nagel AK, Schilling M, Comte-Walters S, Berkaw MN, Ball LE. Identification of O-linked N-acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Molecular & cellular proteomics : MCP 2013 12(4) 23443134
Abstract:
The nutrient-responsive β-O-linked N-acetylglucosamine (O-GlcNAc) modification of critical effector proteins modulates signaling and transcriptional pathways contributing to cellular development and survival. An elevation in global protein O-GlcNAc modification occurs during the early stages of osteoblast differentiation and correlates with enhanced transcriptional activity of RUNX2, a key regulator of osteogenesis. To identify other substrates of O-GlcNAc transferase in differentiating MC3T3E1 osteoblasts, O-GlcNAc-modified peptides were enriched by wheat germ agglutinin lectin weak affinity chromatography and identified by tandem mass spectrometry using electron transfer dissociation. This peptide fragmentation approach leaves the labile O-linkage intact permitting direct identification of O-GlcNAc-modified peptides. O-GlcNAc modification was observed on enzymes involved in post-translational regulation, including MAST4 and WNK1 kinases, a ubiquitin-associated protein (UBAP2l), and the histone acetyltransferase CREB-binding protein. CREB-binding protein, a transcriptional co-activator that associates with CREB and RUNX2, is O-GlcNAcylated at Ser-147 and Ser-2360, the latter of which is a known site of phosphorylation. Additionally, O-GlcNAcylation of components of the TGFβ-activated kinase 1 (TAK1) signaling complex, TAB1 and TAB2, occurred in close proximity to known sites of Ser/Thr phosphorylation and a putative nuclear localization sequence within TAB2. These findings demonstrate the presence of O-GlcNAc modification on proteins critical to bone formation, remodeling, and fracture healing and will enable evaluation of this modification on protein function and regulation.
O-GlcNAc proteins:
NUCB2, WNK1, S30BP, NFIA, NUCB1, SBNO1, RPRD2, NFRKB, PF21A, NU214, UBP2L, MAST4, LPP, CNOT4, TAB1, TAB2, PLIN3
Species: Mus musculus
Download
Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG 2nd, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proceedings of the National Academy of Sciences of the United States of America 2012 109(19) 22517741
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.
O-GlcNAc proteins:
ZEP3, CAMP1, FRPD1, SKT, DLGP4, DPYL2, STXB1, MAP2, NUMBL, M3K5, NOTC2, CTND2, CSK22, ACK1, SYUA, ATX2, ZFR, BSN, GCR, EGR1, NFL, NFM, RC3H2, MAMD1, ATX1L, DERPC, NCAM1, MAP1B, G3P, ATF2, MAP4, KCC2B, AIMP1, FOXK1, STAT3, AINX, NEDD4, RP3A, DVL1, GOGA3, FOXP1, TB182, GMEB2, PI5PA, MRTFB, DOCK4, ABI2, KCNJ3, NCOA1, RGRF2, TNIK, WNK1, G3BP2, MPRIP, XRN1, RLA2, S30BP, NFIA, MARK3, ENAH, PGBM, CDK12, MA6D1, PHAR1, PSD3, NELL1, PRC2C, YETS2, FOXK2, WNK2, LIMC1, TNR6C, AGAP2, ZEP2, AAK1, TNR6A, CAMKV, PKHA7, GRIN1, FCHO2, GARL3, STOX2, UBN1, ABL2, CDV3, PHAR4, TAB3, NUFP2, UNKL, OSBP2, RBM27, CYFP2, TM1L2, ANR40, NACAD, SIN3A, NCOR1, LAMA5, NCOA2, AP180, RAI1, M3K7, TAF6, SRBS1, SH3G1, TLE4, MINT, ZYX, SF01, SYN2, TBR1, SBNO1, CRTC1, GIT1, SLAI1, PKP4, CDK13, RHG23, SH3R1, JHD2C, HECD1, ABLM3, ARMX2, LAR4B, RHG21, FBX41, RPRD2, WWC2, ZN532, BCR, DLGP3, NYAP1, GMIP, NFRKB, MAGI1, CNOT1, NU188, PICAL, SMAP2, SPAG7, PRC2B, ATX2L, MAP6, MCAF1, PHF24, NAV3, AUXI, RERE, RIMB2, PUM1, NU214, KCMF1, EPN1, AGFG2, UBP2L, C2C2L, CNKR2, ZN598, SHAN2, MAST4, RHG32, MYPT2, TB10B, FRM4A, SP130, DLGP2, ZNT6, ABLM2, EMSY, CLAP2, CNOT4, PAMR1, CREST, IFFO1, OSBL6, YTHD3, TM266, SI1L1, SH3R3, RBM14, CNOT2, ANK2, DIDO1, SYNPO, VCIP1, TAB1, SCYL2, ASPP2, F193A, OGT1, NAV1, SYNJ1, RPGF2, EP400, P66A, PDLI5, SCAM1, HS12A, AGFG1, I2BPL, PO121, ABLM1, SPART, RFIP5, CS047, SIR2, AMOT, CCG8, ZCH14, WDR13, UBAP2, NCOA5, FRS3, ZFN2B, BASP1, DCP1A, SRGP2, SRGP1, SYUB, CLIP1, UBXN1, GORS2, EPN4, RB6I2, ANR17, RTN4, TXD12, NECP1, DLGP1, FIP1, F135B, TM263, PLIN3, MYPT1, CRIP2, TSC1, NBEA, RIMS2, ZN704, RBP2, RTN3, 4ET, ELF2, NUDT3, FMN2, NCOA6, SRCN1, ASAP1, RAD1, SON, PLEC, ULK2, ADDA, PCLO, HIPK2, SH2D3, YLPM1, RHG07, TEN1, NCOR2, COR1B, TNIP1, DEMA, E41L3, SYUG, APCL, MECP2, E41L1
Species: Mus musculus
Download
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Molecular & cellular proteomics : MCP 2012 11(8) 22645316
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
O-GlcNAc proteins:
A0JNY3, A2A653, A2A654, TANC2, ZEP3, MA7D2, CKAP5, CAMP1, LZTS3, A2AIR4, A2AJ19, AJM1, MA7D1, A2ALK6, RPGP1, UBR4, A2AP92, SKT, ANR63, A2ATK9, A2AUD5, A2BI30, A6H6J9, A6MDD2, A8DUV1, B1AQX6, B1AR09, GRIK3, B1ATI9, B1AWT3, NHSL2, FRS1L, UBP24, DLGP4, B2RQ57, B2RQ80, PYR1, B2RQL0, B2RQQ5, GNAI1, B2RUE8, OTU7B, B2RWX1, B6ZHC4, B6ZHC5, B7ZCA7, B7ZMP8, B7ZNA4, B7ZNF6, B7ZWM6, B9EHE8, CTTB2, B9EKL9, PTPRZ, D1FNM8, D3YU59, D3YWX2, DGKH, D3YXR8, PGBD5, SHAN1, D3Z0V7, D3Z2J5, D9HP81, E0CYT1, E9PU87, E9PUA3, E9PUC4, DGKD, E9PUR0, E9PV14, E9PV26, KI67, E9PWL1, E9PWM3, E9PY55, E9PZP8, E9Q1M1, E9Q2B2, E9Q3D6, E9Q3G8, E9Q3M9, E9Q4N6, E9Q616, E9Q6T8, E9Q6Y8, NUMA1, E9Q828, E9Q9I2, E9Q9J6, E9QA16, E9QAP7, E9QAR5, SC16A, E9QJU8, E9QMJ1, RFIP2, HXK2, CAN2, SC22B, DPYL2, STXB1, TCOF, DCTN1, GLU2B, EF2K, PRDX4, AIP, NUMBL, GSTO1, GSH0, M3K5, PSMD4, DHX15, NPC1, BMPR2, VIAAT, BCAT2, CTND2, PITM1, CSK22, REPS1, ACK1, SLK, CAC1B, PGRC1, IMPA1, SYUA, AKA7A, STRN, RL35A, AT2A2, PGAM2, ATX2, NMT1, E41L2, GPX4, EMC8, DHB12, HCN4, KDM6A, ZN326, SORL, GRPE2, KLC1, ZFR, O88568, HCN2, HCN1, BSN, TOM1, RPP30, DNJB5, COX1, HA1D, HBA, K2C1, MBP, ALDOA, PGFRB, LDHA, G6PI, ENPP1, NEUM, ANXA2, RIR1, HS90A, EGR1, MDHM, KCC4, NFL, NFM, GNAI2, PDIA1, NUCL, CADH1, RC3H2, LRC4B, IGS11, DERPC, UBB, IFI5B, IFI4, ANXA1, EF1A1, H2B1F, PARP1, HS90B, DMD, KCC2A, TCPA, A4, COX5A, GELS, UMPS, NCAM1, GPDA, MDHC, SRP54, RLA0, GLNA, H12, LEG1, DDX3L, SPTN1, AP2A2, TPIS, KS6A3, COF1, GNAO, NFH, SERPH, VIME, MTAP2, TPM3, EIF3A, CBX3, IMDH2, MCM3, CTNA1, MAP4, GNA12, GNA13, PDIA3, PSB8, NCKP1, PABP1, FKBP4, HMGB2, AIMP1, LA, ACM4, SYWC, RANG, RAB5C, RAB18, CALX, PRDX1, RL12, PPM1B, DNLI1, CAP1, STAT3, PURA, OPRM, TCPQ, CX6A1, MSH2, H14, H11, ALDR, ALD2, CBP, AINX, NEDD4, RP3A, CAPZB, SRPRB, RL36, SOX2, HS74L, ADT1, ROA1, INPP, PCY1A, MCM4, CSRP3, RAB7A, CDN2A, HDGF, ADT2, IMA1, UBP10, KPYM, RIDA, HMGA2, RL10A, CCHL, SOX1, RAB2A, ATX1, CACB3, HMCS2, GOGA3, ATPK, ATPB, ACTN4, IDI1, ACOT8, PTPA, KCNN2, KCNN3, TB10A, TB182, SF3B6, MRTFB, DOCK4, MYPR, EIF3E, PCBP1, LIPA3, ACTB, IF4A1, SNP25, RAB10, CSN2, HNRPK, RRAS2, PRS8, RS15A, 1433E, RS18, RS11, SMD1, ABI2, EF1A2, ACTA, VATB2, RL23, RS24, GBB1, HSP7C, TCTP, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, RS17, RS12, UB2L3, RACK1, ACTS, 1433T, TBA4A, TBA1A, TBB4B, PLXA2, DCC, EBP, NFIX, EM55, HNRH2, NCOA1, ELAV1, RGRF2, USP9X, TCPB, TCPE, TCPZ, NUCB2, IRS2, WNK1, RL36A, CSRP1, SEPR, RS3A, DPYL1, MPRIP, CAC1A, ATP5J, BOP1, RS5, WBP2, CXAR, PLPL9, G3BP1, RBBP6, CDS1, TBB5, IL6RB, NMDE2, NMDE3, TOP2A, NOTC1, NDKB, AQP1, UBA1, CTNB1, S30BP, NFIA, NUCB1, MARK3, APLP1, ENAH, ATPA, TF65, YES, MARK2, PGBM, PYC, CAPR2, EMAL1, LARP7, BAX, CNN2, LYAR, CHD8, CNNM1, INF2, TT21B, Q0IJ77, TRIO, VGF, TANC1, CDK12, Q14B66, MA6D1, NSUN2, MCM9, PHAR1, PSD3, Q2Q7P0, FILA2, Q3TAD4, NB5R4, GUAA, METK2, PRC2C, Q3TRG3, PLPL6, K22E, YETS2, Q3TY93, FUBP2, F117B, Q3U882, LBR, TM109, FOXK2, Q3UFK1, Q3UGZ4, TNR6C, DAB2P, ZEP2, AAK1, Q3UHT7, DTX3L, EDC4, PARP3, WASC4, GRIN1, Q3UQ23, SRBS2, THSD4, MRCKA, SPRY3, KSR2, GRM5, TBCD9, LRRF1, ARMX5, STOX2, SHAN3, UBN1, OXR1, DDX17, PHAR4, ANR28, ZN608, Q571B7, PRAG1, TAB3, Q58DZ3, IQEC2, Q5DU62, AAPK1, NUFP2, UNKL, SMG7, RBM27, CYFP2, TM1L2, PSME4, ANR40, Q5SUH6, GGNB2, SYNRG, Q5SVJ0, RPGP2, TBC9B, ACACA, Q5SXC4, Q5XJV5, LMTK3, RN123, ZDHC8, SRC8, MYL6, SKI, SAMH1, IRGM1, CLD11, NPT2A, SPB6, VDAC2, VDAC3, VDAC1, STYX, RBBP4, ASNS, NCOA2, LAP2A, PPM1G, ASTN1, PRDX2, HCFC1, APC, KCNA4, AP180, FXR1, GDIB, GRID2, GRID1, CBX5, HS105, SERA, LASP1, NPM, PCBP2, M3K7, SRBS1, DBNL, SH3G1, CYTB, IF4G2, MINT, ZYX, RALY, TFE3, Q640L6, AR13B, HECAM, NPDC1, SYN2, TBR1, ISG15, ABCG1, ATP4A, MRC2, G3PT, PTN13, TPP2, PUR2, CTNA3, SBNO1, BEGIN, K1549, GIT1, SLAI1, PKP4, PEAK1, CDK13, SH3R1, MYOF, ABLM3, ARMX2, CE170, LAR4B, NOP58, Q6GR78, TPM4, NIPBL, RRP5, FBX41, Q6NVA3, RPRD2, WWC2, ZN532, Q6NXW0, S23IP, SMHD1, NEST, CSKI1, Q6P9N8, MTSS2, AHDC1, PTN23, TRAK1, SRSF1, CHD4, DLGP3, NUP98, NYAP1, KCC2D, AT1A3, AT1A2, NFRKB, DDX58, MAGI1, WDFY3, TACC1, GGYF2, PF21A, KDM3B, CNOT1, LARP1, Q6ZQB7, NU188, Q6ZQJ9, Q6ZQK4, RS9, RL10, IF2A, SC6A5, SEM6D, 2AAA, F102A, MTCH2, PICAL, MRO2B, SCN4B, PLPR4, HNRPQ, TBB2A, SMAP2, Q7TNS5, PLPR3, MBB1A, LNP, TPPP, ATX2L, OTUB1, EXOS3, MAP6, ELP1, SI1L2, LRRC7, ERBIN, PHF24, R3HD2, NAV3, AGRL3, Q80TS6, AUXI, MADD, AVL9, PUM1, UBP8, NU214, SEPT9, NAA15, CAMP3, FA98B, TDRKH, EPN1, TMCC2, AGFG2, UBP2L, Q80X68, C2C2L, FLNB, LRRT4, WNK3, PRIC2, CNKR2, ZN598, SHAN2, AGRB3, Q80ZX0, ZFYV1, MAST4, RHG32, Q8BFW6, LPP, PEF1, ACTBL, ROA3, TET3, MYPT2, IF4B, SYAC, F168A, TBL1R, TB10B, CK049, CARF, TGO1, FRM4A, SYIM, ANS1B, DLGP2, ZNT6, RCC2, ABLM2, LSS, UNC80, NOE2, CF015, EMSY, ODP2, GGA3, SYLC, DMXL2, IMP2L, CLAP2, LIPA2, ASPH, CNOT4, FLNA, F163B, GEPH, CREST, KCC1D, PGES2, KANK2, GEMI5, IFFO1, OSBL6, YTHD3, TM266, POGZ, LACC1, MAP1S, A16L1, SI1L1, PP4R4, MYO9A, THOP1, RBM14, Q8C2R1, CNOT2, Q8C6E9, CC134, ANK2, ELFN1, DIDO1, NHSL1, WDR37, DCTN4, SYNPO, BCAS3, VCIP1, Q8CE98, TAB1, SCYL2, NED4L, SYEP, F193A, GNAL, OGT1, NAV1, SYNJ1, RPGF2, EP400, PHC3, P66A, TBCE, VWF, STAU2, LIN7A, TBC23, ZBT20, RTN1, HS12A, DNM1L, UNC5B, UNC5A, ANLN, AGFG1, MATR3, Q8K314, AHI1, NDUS8, I2BPL, PREP, ABLM1, EIF3L, ERF3A, HNRPL, IQEC1, DOCK7, DC1L1, SPART, BST2, RFIP5, AT2A1, NUP35, LUZP1, MAVS, MYH9, PARN, AT1A1, SIR2, SNRK, ZDHC5, CC50A, AMOT, AGAP3, MARK1, Q8VHM5, FLNC, SFPQ, CPIN1, WDR13, BACH, S12A5, RAB14, ACLY, MIC25, ATPG, DDX1, SH3L3, UBAP2, NCOA5, CSDE1, FRS3, ZFN2B, DLG2, PTBP2, SRGP1, TMLH, DYST, SYUB, ELOV6, ALS2, TADBP, TBB6, CLIP1, LRC59, K2C5, UBXN1, SIR1, SPRE1, PAWR, MED1, MEP50, STML2, UBP11, NONO, RRAGC, VMA5A, MAOM, DCTN2, NEUA, DDAH2, DNJA3, TRXR3, RB6I2, SRRT, DSRAD, Q99NC2, RIMS1, ANR17, RTN4, NU155, NTRI, RRBP1, ZN318, TRI33, ATP5L, RL17, GLOD4, Q9CQ43, SDHB, GLRX3, IFM3, NECP1, OCAD1, RRP44, TBB2B, DDAH1, YIF1B, ROA0, NIP7, MPPB, CYBP, RL11, TECR, CHTOP, PAIRB, QCR1, NNRD, GARS, TOM70, RS19, SYRC, CNDP2, TMEDA, ODO2, DLGP1, TBB4A, IDH3A, IPYR, RL37, FIP1, TIM50, EF1G, RM17, GSDMD, DDA1, F135B, TM263, CNN3, PLIN3, PGAM1, XRN2, MYPT1, DJC10, KC1D, GNAI3, PUR6, S38A3, NDUBA, CRIP2, TSC1, RAI14, NBEA, TCF20, SORC2, DPYL5, TBB3, RBP2, ARHG7, RTN3, SPN90, RBCC1, PSMG2, DDX24, CLD12, PALLD, ELF2, TMOD3, NUDT3, COPB, NUP50, DDX21, TULP4, FLII, RPF2, CCG3, TBA8, IQGA1, NECT1, ADRM1, FMN2, MPP5, DCLK1, BAG3, CUL3, MINK1, REEP6, TRXR1, SYGP1, SON, APBB1, DREB, SPY2, MACF1, ULK2, ZBP1, TOM40, ADDA, GOGA5, DNJB1, MAP1A, PCLO, GAB1, RIPK3, NPAS3, SH2D3, NUBP2, ZEB2, SYT7, DEST, TEBP, SRS10, RPGR, PR40A, KHDR3, TPSN, CDYL, KAD2, TEN1, PDC6I, CHIP, IF4H, COR1B, COR1C, TNIP1, GANP, ARC, MPP2, SHAN1, VAPA, GSK3B, DEMA, E41L3, JIP1, GBP2, CAD20, P5CS, LAT1, DYR1B, MD2L1, SAE2, APCL, SYVC, MTMR1, MECP2, E41L1, SUCB1, HDAC6, GRIA4, HOME1, OSB10
Download
Hahne H, Kuster B. Discovery of O-GlcNAc-6-phosphate modified proteins in large-scale phosphoproteomics data. Molecular & cellular proteomics : MCP 2012 11(10) 22826440
Abstract:
Phosphorylated O-GlcNAc is a novel post-translational modification that has so far only been found on the neuronal protein AP180 from the rat (Graham et al., J. Proteome Res. 2011, 10, 2725-2733). Upon collision induced dissociation, the modification generates a highly mass deficient fragment ion (m/z 284.0530) that can be used as a reporter for the identification of phosphorylated O-GlcNAc. Using a publically available mouse brain phosphoproteome data set, we employed our recently developed Oscore software to re-evaluate high resolution/high accuracy tandem mass spectra and discovered the modification on 23 peptides corresponding to 11 mouse proteins. The systematic analysis of 220 candidate phosphoGlcNAc tandem mass spectra as well as a synthetic standard enabled the dissection of the major phosphoGlcNAc fragmentation pathways, suggesting that the modification is O-GlcNAc-6-phosphate. We find that the classical O-GlcNAc modification often exists on the same peptides indicating that O-GlcNAc-6-phosphate may biosynthetically arise in two steps involving the O-GlcNAc transferase and a currently unknown kinase. Many of the identified proteins are involved in synaptic transmission and for Ca(2+)/calmodulin kinase IV, the O-GlcNAc-6-phosphate modification was found in the vicinity of two autophosphorylation sites required for full activation of the kinase suggesting a potential regulatory role for O-GlcNAc-6-phosphate. By re-analyzing mass spectrometric data from human embryonic and induced pluripotent stem cells, our study also identified Zinc finger protein 462 (ZNF462) as the first human O-GlcNAc-6-phosphate modified protein. Collectively, the data suggests that O-GlcNAc-6-phosphate is a general post-translation modification of mammalian proteins with a variety of possible cellular functions.
Download
Page 1 of 1