REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (8 results)


Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical chemistry 2022 94(7) 35132862
Abstract:
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
O-GlcNAc proteins:
RBM47, E2F8, SBNO1, CNOT1, HMX3, ABTB3, RHG32, P121C, PDLI1, SNP23, PSMD9, TAF4, ARI1A, ABLM1, STX16, HGS, MYPT1, SC16A, SR140, SET1A, FYB1, TIF1A, PPM1G, SHIP2, EIF3D, NUP42, KDM6A, TET3, SI1L1, DC1L2, HNRPR, PRPF3, TPD54, E41L2, ZN207, BUB3, AKAP8, ZNRD2, MYPT2, GANP, HNRPQ, DIAP1, PLIN3, MAFK, TBL1X, MITF, N4BP1, ZC11A, T22D2, PP6R2, ANR17, BCAS1, NCOR1, SPAG7, TIPRL, SPF30, TOX4, TOX, PCF11, AGFG2, ZFPL1, KIF4A, SC24A, SC24B, CNOT4, ASML, M4K4, BPNT1, PX11B, CHK2, LMNA, GLPA, TFR1, ALDOA, GCR, HSPB1, GNAI2, RLA1, RLA2, RLA0, K1C18, K2C8, RB, CATD, SYEP, PTPRC, VIME, GSTP1, HMGB1, ROA1, ATX1L, DERPC, ZN865, TPR, LAMP2, EF2, PLSL, PLST, GLU2B, HCLS1, PO2F1, RAC2, ATF2, ZEP1, TFE2, MUC1, CREB1, JUNB, ATF7, PTN2, DDX5, SON, ATF1, CSK22, NFKB1, FLNA, PUR2, RFX1, CBL, COF1, PTBP1, ARNT, DCK, PYR1, MAP4, CALX, 3MG, PRDX6, CDC27, AMRP, CLIP1, ZEP2, HNRH1, 1433S, ELF1, LSP1, PTN7, IRS1, ADDA, NU214, CUX1, TXLNA, MLH1, ECHA, IF2G, HNF4A, LAP2B, GPDM, RANG, KI67, CRKL, CAPZB, RFX5, SOX2, CAMLG, NASP, FAS, CDK8, SRP09, YLPM1, NU153, RBP2, TAF6, EMD, LRBA, PAPOA, HCFC1, HDGF, AGFG1, HNRPF, HXK2, NUP98, ATX1, RD23B, AF10, AF17, DSRAD, FOXA1, HNRH2, NU107, TPIS, PSME3, TPM4, F193A, GTF2I, PHC1, PRKDC, MAP1A, SARNP, FOXK1, FBLN2, FAM3A, EM55, NFKB2, HNRPU, SPTB2, FOXK2, RUNX1, FLI1, SATB1, SP2, MP2K1, NUCB1, KMT2A, IF4G1, TLE3, TLE4, KPCT, PSME1, GABPA, PRDX1, ACK1, AHNK, IFFO1, GALT2, SRBP2, TROAP, BPTF, TP53B, CBX3, NFAC2, PICAL, CUL4B, ASPP2, NFYC, CDK13, VEZF1, UBP2L, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, UBP10, 2A5D, MEF2D, LASP1, NUMA1, CND1, TEBP, PCBP1, RBMS2, SF3A1, TSN, SF01, MED1, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, DPYL2, TAF9, MAPK3, CSPP1, PDS5A, QSER1, AAK1, LRRF1, VP26B, ACSF3, TPRN, CRTC2, PAN3, YIF1B, PRC2B, CEP78, ZN362, FKB15, LRIF1, CAF17, UBAP2, NT5D1, AHDC1, LYRM7, RPRD2, ZN318, TASO2, TBC9B, ARID2, C19L1, ABLM2, TWF2, GRHL2, CPZIP, NIPBL, LIN54, ZCHC8, C2D1A, SCYL2, NFRKB, RSBNL, MDEAS, ZC3HE, LARP1, SAMD1, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NBEL2, CO039, SRCAP, UBN2, TM1L2, ASXL2, SPT6H, MEPCE, BOP, KDM3B, ERMP1, TRM1L, ZCCHV, KANL1, POGZ, ZFY16, NUFP2, MAVS, EMSY, RAI1, I2BP2, SRGP1, RHG30, SH3R1, HUWE1, YTHD3, GALT7, LYRIC, BCL9L, CASZ1, TSYL5, DDX42, CACL1, P66A, I2BP1, VRK3, FOXP4, ARI3B, TEX2, MGAP, ANKH1, SUGP1, MILK2, ERF3B, K2013, PHAR4, XRN1, ZN687, FNBP4, ARFG1, ENAH, NHLC2, AVL9, XXLT1, GOLM1, TXND5, SERB1, CHSTE, SLAI1, TNR6A, PHC3, SP20H, VP37A, KMT2C, ARI1B, KNL1, NEDD1, ALMS1, PREX1, DLG5, GEMI5, PIGO, UBS3B, WIPF2, FRS2, PDC6I, ZFN2B, TPC12, SEN15, PCNP, LMO7, ATX2L, CSKI2, PSPC1, P66B, GBF1, SMG7, RTF1, TOPB1, PHF3, MAML1, TTC9A, PRCC, RREB1, CBP, DDX17, SEM4D, ARHG1, GPKOW, FUBP2, LPP, TTC28, PF21A, FAF2, ESS2, EDC3, A7L3B, P121A, PDLI5, FUBP3, VCIP1, PDLI2, Z512B, ZFR, EP400, PRRC1, NOL4L, RBM14, PURB, NACC1, CIC, MED15, NUDC1, SIN3A, AEDO, MINT, HTF4, CNN2, RGPD5, ATX2, HCD2, S29A1, ARI3A, SH3G1, TRIR, DPH2, MGME1, ERP44, ESYT1, CCM2, CNPY3, WAC, DIDO1, HGH1, MMTA2, PAXX, NTM1A, RBM4, SGPP1, HEMGN, HDHD5, YTHD1, FTO, CEP44, BC11B, PITH1, SP130, BRD8, RGAP1, I2BPL, ADNP, DHX36, FOXP1, CENPH, WNK1, E41L1, ZHX3, YTDC2, RANB3, PHAX, ECT2, CNO10, MLXIP, PKHA5, PKHA1, RC3H2, LY9, RDH14, TAF9B, NCOA5, TANC2, TNR6C, CHD8, SDF2L, ARFG3, UBN1, RTN4, PDLI7, CHSTC, STRN4, PNO1, BMP2K, RBM12, STAU2, TXLNG, PNPO, CARF, TAB2, TMOD3, CDK12, F120A, HPBP1, ITSN2, CNOT2, CHMP5, VAPA, CAMP3, RBM27, KANL3, RERE, ZN219, SE1L1, STAP2, LIMD1, TCF20, SEPT9, UBQL2, TRPS1, S30BP, NRBP, EI2BD, SIX4, APC7, TASOR, GMEB2, PARP4, MA1B1, ACINU, ZHX1, CDV3, MRTFB, ZBT21, YETS2, HECD1, ZMYD8, SCAF8, PP6R1, TRI33, TNR6B, ZC3H4, SHAN2, SRRM2, CTND2, SCML2, ZN148, T3JAM, VDAC3, AKAP2, DDX52, NOP58, GIT1, ZN281, SIT1, SALL2, ARIP4, CRBG1, HYOU1, KLF12, PRC2C, YTHD2, CD2AP, TNPO3, SRPRB, TSSC4, NUBP2, HCFC2, FHOD1, NCOR2, GMEB1, NCOA3, S23IP
Species: Homo sapiens
Download
Fan Z, Li J, Liu T, Zhang Z, Qin W, Qian X. A new tandem enrichment strategy for the simultaneous profiling of O-GlcNAcylation and phosphorylation in RNA-binding proteome. The Analyst 2021 146(4) 33465208
Abstract:
RNA-protein interactions play important roles in almost every step of the lifetime of RNAs, such as RNA splicing, transporting, localization, translation and degradation. Post-translational modifications, such as O-GlcNAcylation and phosphorylation, and their "cross-talk" (OPCT) are essential to the activity and function regulation of RNA-binding proteins (RBPs). However, due to the extremely low abundance of O-GlcNAcylation and the lack of RBP-targeted enrichment strategies, large-scale simultaneous profiling of O-GlcNAcylation and phosphorylation on RBPs is still a challenging task. In the present study, we developed a tandem enrichment strategy combining metabolic labeling-based RNA tagging for selective purification of RBPs and HILIC-based enrichment for simultaneous O-GlcNAcylation and phosphorylation profiling. Benefiting from the sequence-independent RNA tagging by ethynyluridine (EU) labeling, 1115 RBPs binding to different types of RNAs were successfully enriched and identified by quantitative mass spectrometry (MS) analysis. Further HILIC enrichment on the tryptic-digested RBPs and MS analysis led to the first large-scale identification of O-GlcNAcylation and phosphorylation in the RNA-binding proteome, with 461 O-GlcNAc peptides corresponding to 300 RBPs and 671 phosphopeptides corresponding to 389 RBPs. Interestingly, ∼25% RBPs modified by two PTMs were found to be related to multiple metabolism pathways. This strategy has the advantage of high compatibility with MS and provides peptide-level evidence for the identification of O-GlcNAcylated RBPs. We expect it will support simultaneous mapping of O-GlcNAcylation and phosphorylation on RBPs and facilitate further elucidation of the crucial roles of OPCT in the function regulation of RBPs.
O-GlcNAc proteins:
NACAM, SAP18, PLOD2, NOP56, DDX3X, PLXB2, RRP8, SERA, PSMD3, MCA3, PRPF3, TPD54, TIM44, ACTN4, ACSL4, PLOD3, IF2P, ZC11A, SC22B, PR40A, MPPB, CSDE1, U520, NU155, EIF3G, SPF27, RL1D1, CLPX, RTN3, LC7L3, VAPB, SMC2, AP2A1, WIZ, BAG2, TOM40, ACL6A, EGFR, LMNA, TFR1, FRIH, RPN1, RPN2, ITB1, SYEP, HNRPC, SRPRA, VIME, GNAI3, ANXA5, LAMP1, ACADM, TOP1, TOP2A, PABP1, ADT3, TPR, EF2, PDIA4, FPPS, ENPL, ALDR, NDKA, RS2, UBF1, ARF4, NUCL, RAB6A, PSB1, FLNA, SDHB, UBA1, NDKB, ITA6, SFPQ, IF4B, AT2B4, THIL, RS12, PSA4, SYVC, 1433T, MAP4, PSA5, PSB4, NDUS1, ECHM, KCY, AMRP, SDHA, METK2, CPSM, PUR9, HNRH1, 1433S, STIP1, P5CR1, MCM4, HSP74, CTNA1, MYH9, DEK, RL4, SPB5, NUP62, RBMX, TCPZ, ECE1, PRS6B, KI67, RAGP1, ATRX, SYQ, LMAN1, NASP, FAS, AL7A1, SYSC, MCM2, ACADV, NU153, RBP2, DNLI3, MRE11, CPT1A, F10A1, TCPD, RAB7A, IDH3G, HCFC1, DHB4, HDGF, ROA3, 6PGD, NUP98, ACLY, TCP4, SYYC, UBP14, SNAA, IF5, TERA, DSRAD, TPD52, EIF3B, NU107, EPIPL, SC61B, SRP54, B2MG, SMD2, RL23A, YBOX1, NOP14, IF4G2, GTF2I, NUCB2, RT22, HMGN5, RBM10, TFAM, CLH1, SPTB2, SET, CAP1, EXOSX, EWS, ODO1, RL18A, NUCB1, M2OM, LMNB2, SRS11, CALD1, RL18, C1QBP, CKAP4, KHDR1, DHX9, GOGA2, SSRP1, AHNK, AIMP1, ILF3, SRSF5, SRSF6, TIF1B, TCOF, PICAL, SNW1, TRI29, EIF3A, MLEC, CAPR1, SMC1A, RRP1B, GANAB, NUMA1, U5S1, RRS1, ACOX1, PLEC, RNPS1, PUM3, RB11B, SEPT7, DDB1, CDC37, SRSF7, PCKGM, HNRL2, INF2, PDS5A, PREP, RRP12, TOIP1, HP1B3, RBM26, BRE1A, CDKAL, PRP8, ZC3HE, QSOX2, IKIP, TM10C, EIF3M, PABP2, KTN1, CAND1, THOC6, P66A, MISP, CCAR1, PELP1, NDUF2, RM50, PAF1, TXND5, TOIP2, THOC2, TM263, NU133, PDC6I, SCFD1, LMO7, ELYS, RT27, HS105, NU205, RAD50, SMRC1, TNPO1, FUBP1, P5CR2, PTCD3, DDX27, EFGM, IWS1, NIBA2, YMEL1, PSMD1, EIF3C, ROAA, CMS1, MBB1A, GNL3, PDIP3, PININ, ACAD9, SFXN1, CYBP, RM47, RTN4, DDX21, AAAS, CARF, AATF, BCLF1, MYOF, SYLC, NXF1, SEC63, LIMA1, SEPT9, KAD3, RCOR1, ACINU, TMCO1, PPIE, PA2G4, RUVB2, TR150, RT23, CHTOP, TLN1, HYOU1, SAM50, SP16H, UTP18, SRPRB
Species: Homo sapiens
Download
Xie X, Wu Q, Zhang K, Liu Y, Zhang N, Chen Q, Wang L, Li W, Zhang J, Liu Y. O-GlcNAc modification regulates MTA1 transcriptional activity during breast cancer cell genotoxic adaptation. Biochimica et biophysica acta. General subjects 2021 1865(8) 34019948
Abstract:
Chromatin modifier metastasis-associated protein 1 (MTA1), closely associated with tumor angiogenesis in breast cancer, plays an important role in gene expression and cancer cell behavior. Recently, an association between O-GlcNAc transferase (OGT) and MTA1 was identified by mass spectroscopy. However, the potential relationship between MTA1 and O-GlcNAc modification has not yet explored.