REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (14 results)


Luo Y, Wang Y, Tian Y, Zhou H, Wen L. "Two Birds One Stone" Strategy for the Site-Specific Analysis of Core Fucosylation and O-GlcNAcylation. Journal of the American Chemical Society 2023 37340703
Abstract:
Core fucosylation and O-GlcNAcylation are the two most famous protein glycosylation modifications that regulate diverse physiological and pathological processes in living organisms. Here, a "two birds one stone" strategy has been described for the site-specific analysis of core fucosylation and O-GlcNAcylation. Taking advantage of two mutant endoglycosidases (EndoF3-D165A and EndoCC-N180H), which efficiently and specifically recognize core fucose and O-GlcNAc, glycopeptides can be labeled using a biantennary N-glycan probe bearing azido and oxazoline groups. Then, a temperature-sensitive poly(N-isopropylacrylamide) polymer functionalized with dibenzocyclooctyne was introduced to facilitate the enrichment of the labeled glycopeptides from the complex mixture. The captured glycopeptides can be further released enzymatically by wild-type endoglycosidases (EndoF3 and EndoCC) in a traceless manner for mass spectrometry (MS) analysis. The described strategy allows simultaneous profiling of core-fucosylated glycoproteome and O-GlcNAcylated glycoproteome from one complex sample by MS technology and searching the database using different variable modifications.
O-GlcNAc proteins:
LCE6A, RBM47, HFM1, SMCO3, SBNO1, ODAD3, CNOT1, RCCD1, GLTD2, AGAP5, CX049, PDLI1, TAF4, ABLM1, DVL1, HGS, SC16A, NPC1, LAMA5, TET3, IF4G3, E41L2, AKAP8, PLIN3, MAFK, OPHN1, MITF, OBSL1, ANR17, ENTP6, NCOR1, ERLN1, JERKY, MYCB2, WDHD1, CBPD, TOX4, AGFG2, SC24B, PCNT, BAG3, DDAH2, CLPT1, AACT, LMNA, FINC, FETUA, GCR, KITH, HSPB1, RPN1, RLA2, ITB1, K1C18, ENOA, CATD, TBB5, TACD2, LYAG, BIP, LAMC1, HSP7C, DMD, MPRI, SKI, GILT, GLU2B, ENPL, RSMB, PO2F1, PVR, ZEP1, DPEP1, CBPE, ATF7, SON, ATF1, ITIH2, FST, ICAL, FGF7, CD9, CBL, ITA6, PTPRB, COF1, GATA3, PSA4, PEBP1, CLIP1, ZEP2, GLPK, ELF1, CD68, GPC1, HRH1, IRS1, NU214, SRP14, NUP62, ETFB, LICH, TXLNA, STAT3, MATR3, SSRA, GATA4, MMP13, 5HT3A, NOTC1, YAP1, RFX5, FAS, CDK8, CENPF, NU153, SEPP1, EMD, BCAM, HCFC1, SPHM, ARSD, AGFG1, NUP98, PTTG, RAD, AF17, DSRAD, ITA1, IF6, STAR6, ACTB, HNRPK, H4, RL40, CXAR, GPC5, FOXK1, PGBM, SPTB2, FOXK2, IF4G1, NOTC2, TLE3, PTN12, MTG8, ZO1, LRP1, RGS1, CD47, EP300, AHNK, TROAP, BPTF, NFIA, HYAL2, LMAN2, FOXC1, MB211, OS9, TUSC3, ROCK1, ASAH1, RIPK1, ASPP2, CDK13, SCRB2, VEZF1, DSG2, UBP2L, GIT2, PUM1, RRP1B, NCOA6, MEF2D, CHD4, NUMA1, R3HD1, RCN1, RBMS2, TAF1C, SF01, JHD2C, ELF2, TAB1, HERC1, ZFHX3, ZYX, ADRM1, CCDC6, SNPC1, MA2A1, YC018, QSER1, AAK1, P3H1, GNPTA, RABL6, TB10B, LUZP6, PRC2B, WIPI1, DCA10, HP1B3, ZN362, ZEP3, ZC3HD, UBR4, RHG21, UBAP2, RPRD2, DNAI4, TASO2, RN123, PCX4, ARID2, FTM, BICRL, SCAR3, GRHL2, NIPBL, LIN54, NFRKB, ZC3HE, LCN15, CREL2, IGS10, GGYF2, NBEL2, SRCAP, K0408, UBN2, BACHL, KDM3B, PARPT, RGPD4, POGZ, MAVS, EMSY, RAI1, I2BP2, ABCAC, ZFHX4, LUZP1, FRAS1, RB6I2, AHNK2, S22A9, TEX2, MGAP, SULF2, ANKH1, SUGP1, HYCC2, MILK2, CC116, PHAR4, K319L, ASPM, RPTOR, SYNPO, GALT4, MFSD9, SLAI1, CC168, TNR6A, PHC3, VP37A, SYNE1, PLBL2, TIP, CC110, TEX47, TBC15, STT3B, SPP2B, MAGC3, DYH5, PO210, GEMI5, PIGO, F222B, F151A, LMO7, P66B, MYO3B, GBF1, NICA, TM131, ZN592, LAR4B, GSLG1, GPKOW, LPP, TTC28, PF21A, RBM33, GWL, TONSL, PDLI5, VCIP1, ZFR, EP400, CH048, CI072, NOL4L, RBM14, GBP4, CDK15, PHF12, CIC, MED15, G3ST4, FNBP1, MINT, HTF4, EYA3, ARI3A, H2A1J, GDF15, DPH2, BCL7B, TM2D3, PELO, DIDO1, TRAIP, RBM4, CLC7A, UBE2O, PEG3, SP130, BRD8, I2BPL, EPC1, ADNP, RM46, NELFA, WNK1, ZHX3, SDS3, MLXIP, RC3H2, MUC5B, TANC2, CHD8, CELR2, APMAP, PDLI7, RBM12, STAU2, GPTC2, TAB2, CDK12, PTTG3, FLRT1, CRIM1, DAPLE, IBTK, RBM27, KANL3, RERE, SE1L1, LIMD1, TCF20, DPP2, BAP29, S30BP, LCAP, BTNL2, SIX4, POMT2, INT6, MRTFB, NOTC3, ATS5, BSN, SCAF8, ANR26, SHAN2, SRRM2, CTND2, SCML2, ZN652, ZN281, STRAP, VPP2, PRC2C, NCOR2, DC1L1, STON1, S23IP
Species: Homo sapiens
Download
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical chemistry 2022 94(7) 35132862
Abstract:
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
O-GlcNAc proteins:
RBM47, E2F8, SBNO1, CNOT1, HMX3, ABTB3, RHG32, P121C, PDLI1, SNP23, PSMD9, TAF4, ARI1A, ABLM1, STX16, HGS, MYPT1, SC16A, SR140, SET1A, FYB1, TIF1A, PPM1G, SHIP2, EIF3D, NUP42, KDM6A, TET3, SI1L1, DC1L2, HNRPR, PRPF3, TPD54, E41L2, ZN207, BUB3, AKAP8, ZNRD2, MYPT2, GANP, HNRPQ, DIAP1, PLIN3, MAFK, TBL1X, MITF, N4BP1, ZC11A, T22D2, PP6R2, ANR17, BCAS1, NCOR1, SPAG7, TIPRL, SPF30, TOX4, TOX, PCF11, AGFG2, ZFPL1, KIF4A, SC24A, SC24B, CNOT4, ASML, M4K4, BPNT1, PX11B, CHK2, LMNA, GLPA, TFR1, ALDOA, GCR, HSPB1, GNAI2, RLA1, RLA2, RLA0, K1C18, K2C8, RB, CATD, SYEP, PTPRC, VIME, GSTP1, HMGB1, ROA1, ATX1L, DERPC, ZN865, TPR, LAMP2, EF2, PLSL, PLST, GLU2B, HCLS1, PO2F1, RAC2, ATF2, ZEP1, TFE2, MUC1, CREB1, JUNB, ATF7, PTN2, DDX5, SON, ATF1, CSK22, NFKB1, FLNA, PUR2, RFX1, CBL, COF1, PTBP1, ARNT, DCK, PYR1, MAP4, CALX, 3MG, PRDX6, CDC27, AMRP, CLIP1, ZEP2, HNRH1, 1433S, ELF1, LSP1, PTN7, IRS1, ADDA, NU214, CUX1, TXLNA, MLH1, ECHA, IF2G, HNF4A, LAP2B, GPDM, RANG, KI67, CRKL, CAPZB, RFX5, SOX2, CAMLG, NASP, FAS, CDK8, SRP09, YLPM1, NU153, RBP2, TAF6, EMD, LRBA, PAPOA, HCFC1, HDGF, AGFG1, HNRPF, HXK2, NUP98, ATX1, RD23B, AF10, AF17, DSRAD, FOXA1, HNRH2, NU107, TPIS, PSME3, TPM4, F193A, GTF2I, PHC1, PRKDC, MAP1A, SARNP, FOXK1, FBLN2, FAM3A, EM55, NFKB2, HNRPU, SPTB2, FOXK2, RUNX1, FLI1, SATB1, SP2, MP2K1, NUCB1, KMT2A, IF4G1, TLE3, TLE4, KPCT, PSME1, GABPA, PRDX1, ACK1, AHNK, IFFO1, GALT2, SRBP2, TROAP, BPTF, TP53B, CBX3, NFAC2, PICAL, CUL4B, ASPP2, NFYC, CDK13, VEZF1, UBP2L, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, UBP10, 2A5D, MEF2D, LASP1, NUMA1, CND1, TEBP, PCBP1, RBMS2, SF3A1, TSN, SF01, MED1, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, DPYL2, TAF9, MAPK3, CSPP1, PDS5A, QSER1, AAK1, LRRF1, VP26B, ACSF3, TPRN, CRTC2, PAN3, YIF1B, PRC2B, CEP78, ZN362, FKB15, LRIF1, CAF17, UBAP2, NT5D1, AHDC1, LYRM7, RPRD2, ZN318, TASO2, TBC9B, ARID2, C19L1, ABLM2, TWF2, GRHL2, CPZIP, NIPBL, LIN54, ZCHC8, C2D1A, SCYL2, NFRKB, RSBNL, MDEAS, ZC3HE, LARP1, SAMD1, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NBEL2, CO039, SRCAP, UBN2, TM1L2, ASXL2, SPT6H, MEPCE, BOP, KDM3B, ERMP1, TRM1L, ZCCHV, KANL1, POGZ, ZFY16, NUFP2, MAVS, EMSY, RAI1, I2BP2, SRGP1, RHG30, SH3R1, HUWE1, YTHD3, GALT7, LYRIC, BCL9L, CASZ1, TSYL5, DDX42, CACL1, P66A, I2BP1, VRK3, FOXP4, ARI3B, TEX2, MGAP, ANKH1, SUGP1, MILK2, ERF3B, K2013, PHAR4, XRN1, ZN687, FNBP4, ARFG1, ENAH, NHLC2, AVL9, XXLT1, GOLM1, TXND5, SERB1, CHSTE, SLAI1, TNR6A, PHC3, SP20H, VP37A, KMT2C, ARI1B, KNL1, NEDD1, ALMS1, PREX1, DLG5, GEMI5, PIGO, UBS3B, WIPF2, FRS2, PDC6I, ZFN2B, TPC12, SEN15, PCNP, LMO7, ATX2L, CSKI2, PSPC1, P66B, GBF1, SMG7, RTF1, TOPB1, PHF3, MAML1, TTC9A, PRCC, RREB1, CBP, DDX17, SEM4D, ARHG1, GPKOW, FUBP2, LPP, TTC28, PF21A, FAF2, ESS2, EDC3, A7L3B, P121A, PDLI5, FUBP3, VCIP1, PDLI2, Z512B, ZFR, EP400, PRRC1, NOL4L, RBM14, PURB, NACC1, CIC, MED15, NUDC1, SIN3A, AEDO, MINT, HTF4, CNN2, RGPD5, ATX2, HCD2, S29A1, ARI3A, SH3G1, TRIR, DPH2, MGME1, ERP44, ESYT1, CCM2, CNPY3, WAC, DIDO1, HGH1, MMTA2, PAXX, NTM1A, RBM4, SGPP1, HEMGN, HDHD5, YTHD1, FTO, CEP44, BC11B, PITH1, SP130, BRD8, RGAP1, I2BPL, ADNP, DHX36, FOXP1, CENPH, WNK1, E41L1, ZHX3, YTDC2, RANB3, PHAX, ECT2, CNO10, MLXIP, PKHA5, PKHA1, RC3H2, LY9, RDH14, TAF9B, NCOA5, TANC2, TNR6C, CHD8, SDF2L, ARFG3, UBN1, RTN4, PDLI7, CHSTC, STRN4, PNO1, BMP2K, RBM12, STAU2, TXLNG, PNPO, CARF, TAB2, TMOD3, CDK12, F120A, HPBP1, ITSN2, CNOT2, CHMP5, VAPA, CAMP3, RBM27, KANL3, RERE, ZN219, SE1L1, STAP2, LIMD1, TCF20, SEPT9, UBQL2, TRPS1, S30BP, NRBP, EI2BD, SIX4, APC7, TASOR, GMEB2, PARP4, MA1B1, ACINU, ZHX1, CDV3, MRTFB, ZBT21, YETS2, HECD1, ZMYD8, SCAF8, PP6R1, TRI33, TNR6B, ZC3H4, SHAN2, SRRM2, CTND2, SCML2, ZN148, T3JAM, VDAC3, AKAP2, DDX52, NOP58, GIT1, ZN281, SIT1, SALL2, ARIP4, CRBG1, HYOU1, KLF12, PRC2C, YTHD2, CD2AP, TNPO3, SRPRB, TSSC4, NUBP2, HCFC2, FHOD1, NCOR2, GMEB1, NCOA3, S23IP
Species: Homo sapiens
Download
He J, Fan Z, Tian Y, Yang W, Zhou Y, Zhu Q, Zhang W, Qin W, Yi W. Spatiotemporal Activation of Protein O-GlcNAcylation in Living Cells. Journal of the American Chemical Society 2022 144(10) 35138101
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a prevalent protein modification that plays fundamental roles in both cell physiology and pathology. O-GlcNAc is catalyzed solely by O-GlcNAc transferase (OGT). The study of protein O-GlcNAc function is limited by the lack of tools to control OGT activity with spatiotemporal resolution in cells. Here, we report light control of OGT activity in cells by replacing a catalytically essential lysine residue with a genetically encoded photocaged lysine. This enables the expression of a transiently inactivated form of OGT, which can be rapidly reactivated by photo-decaging. We demonstrate the activation of OGT activity by monitoring the time-dependent increase of cellular O-GlcNAc and profile glycoproteins using mass-spectrometry-based quantitative proteomics. We further apply this activation strategy to control the morphological contraction of fibroblasts. Furthermore, we achieved spatial activation of OGT activity predominantly in the cytosol. Thus, our approach provides a valuable chemical tool to control cellular O-GlcNAc with much needed spatiotemporal precision, which aids in a better understanding of O-GlcNAc function.