REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Jeon BC, Kim YJ, Park AK, Song MR, Na KM, Lee J, An D, Park Y, Hwang H, Kim TD, Lim J, Park SK. Dynamic O-GlcNAcylation governs long-range chromatin interactions in V(D)J recombination during early B-cell development. Cellular & molecular immunology 2025 22(1) 39627609
Abstract:
V(D)J recombination secures the production of functional immunoglobulin (Ig) genes and antibody diversity during the early stages of B-cell development through long-distance interactions mediated by cis-regulatory elements and trans-acting factors. O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins that regulates various protein functions, including DNA-binding affinity and protein-protein interactions. However, the effects of O-GlcNAcylation on proteins involved in V(D)J recombination remain largely unknown. To elucidate this relationship, we downregulated O-GlcNAcylation in a mouse model by administering an O-GlcNAc inhibitor or restricting the consumption of a regular diet. Interestingly, the inhibition of O-GlcNAcylation in mice severely impaired Ig heavy-chain (IgH) gene rearrangement. We identified several factors crucial for V(D)J recombination, including YY1, CTCF, SMC1, and SMC3, as direct targets of O-GlcNAc modification. Importantly, O-GlcNAcylation regulates the physical interaction between SMC1 and SMC3 and the DNA-binding patterns of YY1 at the IgH gene locus. Moreover, O-GlcNAc inhibition downregulated DDX5 protein expression, affecting the functional association of CTCF with its DNA-binding sites at the IgH locus. Our results showed that locus contraction and long-range interactions throughout the IgH locus are disrupted in a manner dependent on the cellular O-GlcNAc level. In this study, we established that V(D)J recombination relies on the O-GlcNAc status of stage-specific proteins during early B-cell development and identified O-GlcNAc-dependent mechanisms as new regulatory components for the development of a diverse antibody repertoire.
O-GlcNAc proteins:
MPEG1, CUL4B, DHX8, RHG27, VIR, PNISR, FRPD1, RENT2, LAS1L, ITIH4, THOC2, MMRN1, PYR1, YTDC2, PTPRB, ANR44, RBM25, OSBL8, DAAF5, SAFB1, KI67, DESP, YTDC1, UBE4A, NUMA1, MORC3, HXK2, LEG9, KNG1, UBE3A, DCTN1, DIAP1, U5S1, RL21, PHB2, CPSF2, DHX15, EXOC4, STAG2, AP1B1, PININ, HNRH1, SP100, GP1BA, ITB3, RL35A, SPT5H, DHX9, E41L2, BAZ1A, ZFR, ROA2, PRS6A, FA5, AFAM, COR1A, SP1, C1QR1, COX2, AMY1, CO3, CO4B, B2MG, HBA, HBB1, K1C10, K2C1, CFAB, ALDOA, TBA1B, TBA3, ITAM, K1C18, LDHA, LCK, APOA4, PTPRC, CFAH, TTHY, ANXA2, ALBU, A1AT1, SPA3K, HS90A, TRFL, ENPL, APOE, MDHM, GNAI2, RPB1, ITB1, PDIA1, NUCL, APOA2, PTPRQ, CALM2, EF1A1, 4F2, PARP1, PERM, FINC, HS90B, K2C8, ITA5, ITB2, TCPA, RL7A, GELS, ICAM1, DNMT1, S10A6, RL27A, RS16, RL7, RSSA, LMNB1, ANXA6, RLA0, CD44, LEUK, H12, CN37, AMPE, HS71L, G3P, LAMP2, HSP72, ENOA, PTBP1, PPIA, TPIS, LYZ1, PCNA, PTPRA, BASI, KS6A1, KS6A3, COF1, FAS, THRB, RL13A, BIP, VIME, PLMN, VTDB, A1AT2, CBL, AP1G1, EIF3A, EST1C, ITAL, CD11B, MCM3, RS2, CD19, UBF1, TLN1, EZRI, MOES, KLKB1, H2AX, VAV, NCKP1, MUG1, KIF2A, DPP4, PTN6, FETUA, C5AR1, CEAM1, CD68, ANT3, SYWC, KIF4, DPOLA, RAB5C, RAB18, CD22, TSP1, CALX, RFC1, PRDX1, RL12, RL18, DNLI1, HSPA9, DYN2, RL28, MMP9, STAT1, STA5B, EPS15, TCPQ, MSH2, H14, H15, RAGP1, SIPA1, NSF, PRS7, BRCC3, NEDD4, CAPZB, RL6, RL5, RL13, RL36, KSYK, PERE, ROA1, MCM4, MCM5, SAHH, K2C6A, VATA, PA2G4, RAB7A, RL9, ADT2, IMA1, PON1, DPOD1, UBP10, KPYM, STAT6, RL10A, CEBPZ, PIPNB, MSH6, UBP5, ATPB, UBP25, NICA, ACTN4, EF2, OPA1, FOXP1, TPM2, WDHD1, ARPC4, RUVB1, PCBP1, ACTB, IF4A1, RS20, UB2D3, ARF3, RL26, RL27, RL37A, ARF4, HNRPK, RS7, PRS4, RS8, RS15A, RS14, RS23, RS18, RS11, RS13, SMD2, ARF6, PRS10, RS4X, RL18A, RL23A, RS6, H4, VATB2, RAB1A, RAN, RL23, RS24, RS25, RS26, RL30, RL31, RS3, RL8, PROF1, RL40, HSP7C, PHB1, RL22, RACK1, ACTS, TBA4A, TBB4B, 1433F, IMB1, M4K1, PKN1, STIM1, PYRG2, ROCK1, RAD50, PYRG1, TCPH, TCPB, TCPD, TCPE, TCPZ, TCPG, WNK1, RHOG, RL19, H33, BACH2, MCM2, MCM6, RS3A, ANX11, SMRC1, FUMH, ARVC, TBB5, APOA1, A1AT4, TYY1, HNRL2, LYAM3, TOP2A, APOH, TERA, UBA1, PLAK, ATPA, IKZF1, SPA3M, SMRCD, TOP1, RAC2, PYC, IF2P, CBG, ACADS, AMBP, PECA1, SSRP1, ZCH18, K2C80, PSA, PTCD3, NSUN2, EDEM3, MCM9, TMC5, HMHA1, HP1B3, GUAA, H2AV, SMCA4, PRC2C, MIDN, K1C26, K22E, PSMD1, BRE1B, ESYT1, AAK1, RHG17, EDC4, UBP19, GPD1L, ELNE, SC31A, IQGA2, K22O, ITB2L, C1TM, UN13A, PLCH1, PDS5B, CENPJ, DDX46, TR150, A16A1, EHMT1, MCTP2, RBM27, CYFP2, PSME4, MYO1G, LC7L3, PUR4, MYH1, LEO1, SIN3A, XRCC1, ODO1, HNRPD, SAMH1, HELLS, ARHG2, I17RA, PML, 2A5G, PPM1G, CFAI, CERU, CTCF, PRDX2, EZH2, HCFC1, PA1B3, ARHG1, PLSL, A2AP, HSP74, DSG1A, GSLG1, EWS, RAD21, FSCN1, GDIB, DDX5, HS105, ITIH2, ITA6, EI2BD, SERA, KINH, PDCD4, PZP, PRG2, MYH10, MCM7, NPM, PCBP2, CTR9, DDX3X, CD180, SPTB2, SPR1A, TIF1B, TFR1, RU17, SPT6H, NDUA4, IF4G2, MINT, RHG30, H2B1B, TOP2B, TPP2, AT2A3, H2A2C, VINC, PUR2, CLH1, SYMC, GNPTA, PDS5A, CDC5L, CE290, F120A, UBP7, JADE3, K1C42, K2C72, SR140, K2C73, S23IP, IF4G1, RBM26, P4R3A, U520, ABCF1, SMHD1, UGGG1, XPO1, ANO6, KIF15, KIF11, FHOD1, FKB15, PTN23, LPPRC, SMRC2, ECM29, CHD4, PK3C3, NUP98, GMIP, NFRKB, TEX2, UBE2O, KDM3B, CE162, CNOT1, CAND1, LARP1, VIP2, RS9, RL35, RS27L, 2AAA, SND1, ASAP2, IPO8, HUWE1, LC7L2, MBB1A, INT7, CTDP1, PP6R1, ELP1, DCAF1, CLAP1, SCRIB, PUM1, NU214, NAA15, FACD2, FBLL1, UBP2L, SYMPK, SIG10, DDX42, ANFY1, EFTU, TNPO1, ROA3, PLD4, SYAC, S2512, NU107, PTBP3, NRDC, ERC6L, GANAB, SP130, NUP93, SUN2, RCC2, IPO5, EMSY, ODP2, RBGPR, SYLC, SYQ, ECHA, RL24, CLAP2, CNDH2, PB1, FLNA, SYIC, IFIX, CIP2A, GEMI5, UBP47, CTL2, TBCD, POGZ, ANC2, KS6A5, EFL1, LCAP, DOCK8, CND2, IWS1, RBM14, DOCK2, UBA6, MIC60, UFL1, VCIP1, NUP88, NED4L, RPB2, AQR, SMC4, SMC2, SYEP, TCRG1, LONM, OGT1, CHERP, CCAR1, INT5, PYGB, COPA, PLCG2, INT4, EIF3B, BCLF1, K319L, URP2, DNM1L, NEK9, FCHO1, PAF1, IPO11, CND1, MATR3, PLCL2, DP13A, PO121, SF3A1, HNRPL, NU133, EIF3C, BST2, CD177, ADIPL, CDC16, STPAP, LRC8C, ACSF2, EVI2B, MYH9, UHRF1, VIGLN, ADPGK, PSMD2, HNRL1, AT1A1, MICA1, CCAR2, DX39A, SRSF4, K2C79, RFA1, HNRPU, S25A3, RBM39, SEC63, IPO4, SFPQ, ACLY, IF4A3, NDUS1, ATPG, DDX1, UBAP2, HEMO, IPO9, RBM5, PRP6, SMCA5, SP16H, TADBP, SF3B3, SYDC, PP6R3, C1TC, NOP2, PDE2A, KIF2C, K2C5, SIR1, XPO5, SMRD2, ECHB, ARP3, EMIL1, UN45A, ACON, DPP3, HSP7E, GTPB4, ARBK1, SRRT, SF3B1, NU155, RRBP1, DHX30, RL17, NUDC2, 6PGL, COTL1, RM18, TRAP1, AT5F1, RL14, XPOT, PRPS2, RRP44, SMC1A, SMUF1, SMC3, PUR9, SNX2, ROA0, RL11, GARS, RL15, MTREX, MMS19, HNRPM, SYRC, NH2L1, RL34, GRIFN, UB2V2, S10AE, CORO7, STAG1, CUL5, SC23B, CALL3, NOP56, RL4, EF1G, PRP4, QCR2, PELP1, AP2B1, XRN2, NVL, EIF3K, 6PGD, SYF1, EIF3F, XPO7, IPO7, RENT1, BCAP, PESC, ERAP1, VPS35, EHD4, TFP11, XPO2, PKHA2, RBP2, UBE4B, SHIP1, HRG, XPO4, AN32B, GTF2I, DYHC1, STK4, COPB, DDX21, ACINU, FLII, IQGA1, HYOU1, HIP1R, FMNL1, SACS, SART3, GIT2, MY18A, ITA2B, FAK2, CAF1A, K1C17, FETUB, PLEC, PO210, ADDA, PCLO, COPG1, UBQL2, H2AY, ZEB2, GALK1, SC11A, MTA2, PR40A, TIM, MYO1C, INSRR, MD1L1, PDC6I, PFKAP, CXA10, GANP, IF2G, ADNP, P5CS, SAE2, ARI1, DX39B, CLIC1, SYVC, AP3B1, ILF3, USO1, HNRPC, BAZ1B, K1C16, SNUT1
Species: Mus musculus
Download
Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature chemical biology 2022 18(2) 34887587
Abstract:
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.
O-GlcNAc proteins:
A0A075B5P4, A0A087WNV1, A0A087WPT1, A0A087WQF8, A0A087WS88, A0A0A0MQM6, A0A0A6YVP0, A0A0A6YY72, A0A0B4J1E2, A0A0G2JFJ6, A0A0G2JFN8, A0A0G2JFY0, A0A0G2JG10, A0A0G2JG59, A0A0G2JG60, A0A0G2JG65, A0A0G2JGL8, A0A0H2UH17, A0A0J9YTU3, A0A0J9YUT8, A0A0J9YUY8, A0A0N4SV00, A0A0N4SV32, A0A0N4SW94, A0A0N5E9G7, A0A0R4J060, A0A0R4J169, A0A0R4J1E3, A0A0R4J1Y4, A0A0R4J260, A1BN54, A1L341, A1L3S7, A2A485, A2A513, A2A5N3, A2A8V8, A2AGK3, LZTS3, A2AM70, A2AMY5, A2APQ6, A2AS44, A2AVJ7, A2AWT6, A2BGG7, KANL3, K1C28, A6X8Z3, A8Y5K6, B0V2N8, B1AU25, TBD2A, THOC2, TPC11, PLXB2, RBM25, B7FAU9, B7ZWM8, B8JK33, B9EHJ3, D3YTT9, D3YUW7, D3YV30, D3YV43, D3YVH4, D3YX49, D3YX64, D3YX85, SAFB1, D3YYT0, D3YZ62, D3YZL1, D3YZT4, D3Z1X3, D3Z2H7, D3Z3E8, D3Z4B0, CCD78, D3Z6N3, CILP2, D6RCG1, E0CY31, E0CYH0, E9PUA5, E9PUJ2, E9PUX0, GCN1, E9PVC6, E9PVG8, KI67, E9PW24, E9PYF4, SET1A, E9PYI8, E9PZW0, E9Q066, E9Q0F0, E9Q0M9, E9Q0U7, E9Q0Y4, E9Q133, E9Q166, E9Q175, E9Q1Z0, E9Q2X6, E9Q3G8, NOLC1, E9Q5F6, E9Q616, MYO1E, E9Q6A9, E9Q6M7, E9Q6T8, E9Q8F0, E9Q9C7, E9Q9H2, E9QA74, E9QAT0, E9QKG6, E9QLM4, E9QN31, E9QNH6, E9QNN1, E9QPE7, E9QPI5, F2Z480, F6S6G6, F6T0G2, F6TFN2, F6TW20, F6WTC8, F6XWD4, F6YRW4, F6YUI5, F7B296, F7C312, FARP1, F8VPX1, F8VQ29, F8WHR6, G3UWP5, G3UWZ0, G3UX48, G3UYD0, G3UYG6, G3UYW3, G3UYZ0, G3X8P9, G3X8Q0, G3X956, SI1L3, G5E839, G5E846, G5E866, G5E879, G5E8C3, G5E8J8, G5E8N3, G5E8T6, H3BJU7, H3BKF6, H3BKM0, H3BKN0, H3BKT5, H3BL49, J3QMC5, J3QNW0, CAN2, ATN1, SRSF5, IMA3, PININ, EIF3D, ATX2, E41L2, UGDH, SP3, IF2B1, ZFR, HIPK1, IGKC, IGHG1, HBA, K2C1, TBA1B, ALBU, HS90A, NUCL, ATX1L, EF1A1, H2B1F, CO1A1, HS90B, TCPA, GELS, HS71L, AP2A2, K1C19, BIP, VIME, MFGM, EIF3A, MCM3, MOES, CTNA1, U2AF2, PDIA3, GRN, PABP1, FKBP4, KIF4, TSP1, HSPA9, TKT, BCL6, FOXK1, H14, NEDD4, LMNA, MCM5, K2C6A, IMA1, KPYM, DDX6, ACTN4, EF2, ASXL1, ACTB, ABCE1, RRAS2, H4, HSP7C, CH60, TBA1A, TBB4B, H31, IMB1, TCPB, TCPE, TCPZ, WNK1, H32, MPRIP, G3BP1, TBB5, HNRL2, TOP2A, UBA1, PLAK, IF2P, EPS8, LRIQ1, ZCH18, LMTD2, FA83H, CDCA2, CYTSA, SPP2B, Q3TJ56, K22E, FUBP2, Q3U6F1, Q3U8S1, FOXK2, PUF60, Q3UID0, Q3UJB0, Q3UNN4, SFSWA, K22O, CFA74, Q3UYN2, LRRF1, ESF1, KIF22, Q3V3Y9, Q45VK5, Q4FJZ2, Q4KL80, Q4TU83, PDS5B, DDX17, LRC47, Q52KR6, TR150, NEXMI, JCAD, NUFP2, PRSR1, RBM27, PHF12, UTP18, LC7L3, Q5SUT0, TSR1, MYO1D, Q5U4C5, SIN3A, SRC8, MYL6, STIP1, CAPR1, IMA5, LAP2A, HCFC1, K1C15, SMRD1, FXR1, DDX5, HS71A, SERA, KINH, MYH10, SIN3B, DDX3X, TIF1B, NUP62, K1C12, SQSTM, TOP2B, Q68EM3, CLH1, CDC5L, F120A, CNDG2, NOP58, SCAF8, K1C42, K2C1B, SR140, ZC11A, ABCF1, RRP12, Q6P5B5, UGGG1, XPO1, KIF11, FHOD1, LPPRC, NUP98, Q6PGF5, NEB2, DAPLE, UBE2O, LARP1, NU188, WDR43, 2AAA, Q792Z1, PICAL, UHRF2, MBB1A, Q7TQE2, NU214, WNK4, KIRR1, UBP2L, FLNB, WNK3, Q80ZX0, LPP, ACTBL, P4HTM, MYPT2, HTSF1, IF4B, NU107, WDR3, NOC4L, CE128, NUP93, SUN2, RCC2, EMSY, SYLC, CKAP4, SRRM2, NUP54, PWP2, SYIC, RL1D1, MAP1S, TTC34, SI1L1, RBM14, Q8C872, DIDO1, ATAD2, NUP88, Q8CFQ9, SMC2, UACA, SYEP, TCRG1, OGT1, CCAR1, SLTM, BICRL, P66A, COPA, HMCS1, Q8JZN2, EIF3B, BCLF1, PHLB2, NAT10, ANLN, SDHA, LS14A, MATR3, DDX18, PO121, EIF3L, HNRPL, NU133, EIF3C, ZC3HA, TDIF2, NUP58, CD109, LUZP1, UTP6, MYH9, UHRF1, VIGLN, CCAR2, CUL7, K2C79, Q8VGW3, DHX36, SFPQ, ACLY, DDX1, U3IP2, SYYC, RPN1, YTHD2, BMP2K, SNX18, SMCA5, Q921K2, SF3B3, DDX27, Q921S6, SMTN, PP6R3, K2C5, DEN2B, NXF1, NONO, ACON, NMD3, RTCB, CT2NL, HSP7E, NU155, IF2B3, Q9CPN9, SMC1A, SMC3, CXXC1, GARS, CEP72, SC23B, Q9D6D0, NOP56, FIP1, SPB1, MYPT1, NVL, EIF3F, RAI14, CPSF1, PESC, VPS35, LIMA1, DKC1, PALLD, NUP50, DDX21, FLII, YBOX3, IQGA1, Q9QUK9, CAF1A, K1C17, MAGD1, MTA2, PR40A, MYO1C, COR1C, E41L3, EHD1, WDR46, ZO2, NU160, ADNP, SYVC, Q9Z1R9, BAZ1B, K1C16, SNUT1, S4R2A9, S4R2J9, V9GX87
Species: Mus musculus
Download
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation Is Essential for Rapid Pomc Expression and Cell Proliferation in Corticotropic Tumor Cells. Endocrinology 2021 162(12) 34418053
Abstract:
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients because of profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlate with their onset or severity. Herein, we investigate the impact of the O-GlcNAc posttranslational modification in their etiology. Found in more than 7000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancer progression and endocrine diseases such as diabetes. In this study, we demonstrated that O-GlcNAc enzymes were upregulated, particularly in aggressive adrenocorticotropin (ACTH)-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we showed that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hypersecretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrated that Pomc messenger RNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By affecting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
O-GlcNAc proteins:
GPTC8, ITB4, PTPRF, VIR, HMCN2, SETX, RTF1, MYH7B, FSIP2, ARGAL, CO6A5, MMRN2, STOX1, PLXB2, AGRG4, F25A2, LOXH1, HMCN1, TM233, PIEZ1, TOPZ1, CE350, M3K19, RYR2, ACACB, RN213, CF251, ARHG5, BICRA, FOXM1, DLDH, PEX5, WRN, CELR1, PROM1, STK10, MYPC3, DTNB, IKKB, ACTN3, ALDOC, RPB1, LMNB1, MAP1B, HVM57, PAI1, MCM3, MIS, RGRF1, MSRE, CTND1, RB22A, ZO1, QOR, ANXA5, MSH6, EVC, KCNN2, DEPD5, NOE3, TBB4B, ROCK1, GSH1, G3BP1, ATS1, TBB5, NF1, PGBM, IF2P, FA8, GDF3, KCMA1, ZCH18, TANC1, NSUN7, SHRM4, FAT4, IGFN1, HMHA1, FA98A, SCRN3, CH048, K22E, SHLD2, BIG3, SDK1, BAHC1, SLMAP, TBCD9, RIMB3, DYH12, ITAD, CKAP2, IGS10, A3LT2, ITA1, HERC2, XIRP2, TR150, IQEC2, LRC8B, FAT2, S39AC, VP13A, MTUS1, GSTCD, TENS3, ACACA, UTP20, KLRA4, PAPOA, STAR3, EWS, KTN1, GRID1, DDX5, CP131, SEM3B, TLL1, MINT, CCPG1, BTF3, TPP2, RBL1, COBA2, TASOR, PDS5A, CE290, NAL14, A2MG, ZZZ3, FREM2, CPSF6, RPRD2, HEAT6, P4R3A, FIL1L, SNX6, GAPD1, PTN23, TRI37, MON1A, MSL1, SARM1, CENPE, DAPLE, TIAM2, UBE2O, KDM3B, SYNE1, CMYA5, FHOD3, TBB2A, MYCB2, SGO2, MCAF1, STAR9, CAPS1, PHF8, CUL9, CLAP1, ST18, SGSM2, TAF1, M18BP, UBP2L, FLNB, OFD1, PTHB1, PDK1, TMCO3, NRDC, MARF1, TM87B, UNC80, TCAF1, KTU, UBP43, CAPS2, ZN609, DOCK2, RHG24, NAKD2, LENG8, UFL1, CD158, CLASR, SSPO, SLTM, NAV1, FBX4, RFWD3, MICA3, STAU2, NEIL3, CCD14, DDX18, UBP45, AL1L1, CCD80, TF2H3, FYCO1, HNRPU, DYH5, DHX36, AGRV1, FLNC, REST, NDUS1, CREL1, CELR3, DYST, BRWD1, GOGA2, PDIA6, TM1L1, RT4I1, CSTN3, PRP19, TARA, UBP16, NOG2, MYO7B, BCDO2, RRBP1, ZN318, DHX30, MITOS, RBM33, NARF, KLH35, ACSL3, SYRC, C16L2, NBEA, TBB3, XPO4, RBCC1, LRP1B, CAC1F, PRG4, BIR1B, SRCN1, SHRM3, ING1, MACF1, ACL7A, SMK2B, H17B6, RPGR, RHG07, MAST1, ADA11, TIM, PFKAP, IRAG1, DEMA, P2R3D, SETBP, NEK4, PLD1
Species: Mus musculus
Download
Page 1 of 1