REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. The Journal of biological chemistry 2023 299(8) 37354972
Abstract:
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
O-GlcNAc proteins:
GRB7
Species: Homo sapiens
Download
Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T, Walker S. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. Journal of the American Chemical Society 2018 140(10) 29485866
Abstract:
The essential mammalian enzyme O-GlcNAc Transferase (OGT) is uniquely responsible for transferring N-acetylglucosamine to over a thousand nuclear and cytoplasmic proteins, yet there is no known consensus sequence and it remains unclear how OGT recognizes its substrates. To address this question, we developed a protein microarray assay that chemoenzymatically labels de novo sites of glycosylation with biotin, allowing us to simultaneously assess OGT activity across >6000 human proteins. With this assay we examined the contribution to substrate selection of a conserved asparagine ladder within the lumen of OGT's superhelical tetratricopeptide repeat (TPR) domain. When five asparagines were mutated, OGT retained significant activity against short peptides, but showed limited limited glycosylation of protein substrates on the microarray. O-GlcNAcylation of protein substrates in cell extracts was also greatly attenuated. We conclude that OGT recognizes the majority of its substrates by binding them to the asparagine ladder in the TPR lumen proximal to the catalytic domain.
O-GlcNAc proteins:
E2F8, PRXD1, TSPY2, CGB1, ZN839, CENPX, PDLI1, WWP2, FOXN3, IMA4, DPYL4, ABLM1, MEIS2, HGS, GAK,