REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (6 results)


Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang X, Li Z, Chai Y, Wang H, Hu X, Li N, Zhang Q, Cao X. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer cell 2022 36084651
Abstract:
How glucose metabolism remodels pro-tumor functions of tumor-associated macrophages (TAMs) needs further investigation. Here we show that M2-like TAMs bear the highest individual capacity to take up intratumoral glucose. Their increased glucose uptake fuels hexosamine biosynthetic pathway-dependent O-GlcNAcylation to promote cancer metastasis and chemoresistance. Glucose metabolism promotes O-GlcNAcylation of the lysosome-encapsulated protease Cathepsin B at serine 210, mediated by lysosome-localized O-GlcNAc transferase (OGT), elevating mature Cathepsin B in macrophages and its secretion in the tumor microenvironment (TME). Loss of OGT in macrophages reduces O-GlcNAcylation and mature Cathepsin B in the TME and disrupts cancer metastasis and chemoresistance. Human TAMs with high OGT are positively correlated with Cathepsin B expression, and both levels predict chemotherapy response and prognosis of individuals with cancer. Our study reports the biological and potential clinical significance of glucose metabolism in tumor-promoting TAMs and reveals insights into the underlying mechanisms.
Species: Mus musculus
Download
Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular & cellular proteomics : MCP 2021 20 34678516
Abstract:
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease.
O-GlcNAc proteins:
IQIP1, A0A0A6YWG7, A0A0G2JF55, A0A0N4SW93, A0A0R4J060, A0A0U1RPL0, A0A140LIW3, A0A140T8K9, A0A1B0GS41, A0A1B0GS91, A0A1D5RMI8, A0A1L1M1J8, A0A1L1SR84, A0A1N9NPH8, A0A1Y7VNZ6, A0A286YDB3, A0JNY3, A2A482, A2A654, TANC2, LZTS3, AJM1, BCORL, A2AUD5, A2AWN8, B1ASA5, B1ATC3, B1AUX2, B2RQL0, CSPP1, B2RY58, B7ZNA5, CTTB2, D3YU22, D3YUV1, D3YWX2, D3YZ21, SHAN1, D3Z5K8, E0CXZ9, E9PU87, E9PUL3, PRRT2, E9PUR0, E9PV26, E9PVY8, SET1A, E9Q0N0, E9Q3E2, E9Q3G8, E9Q4K0, ARI1B, SETD2, E9Q6H8, E9Q6L9, E9Q828, E9Q9C0, E9Q9Y4, E9QAQ7, E9QAU4, E9QAU9, E9QKI2, E9QLZ9, E9QM77, F2Z3U3, F6RQA2, SYGP1, F7C376, BICRA, F8VQL9, F8WIS9, G3UZM1, G3X8R8, G3X928, RFIP2, H3BKF3, H3BKP8, H9KV00, J3QNT7, DPYL2, PRDX6, MNT, NUMBL, PEX5, BMPR2, CTND2, PITM1, ACK1, CAC1B, SYUA, DSG2, SPT5H, E41L2, SP3, KDM6A, CPNS1, ZFR, HCN1, CTBP1, BSN, STAM2, SYN1, MBP, EGR1, NFL, NFM, ITB1, RC3H2, ATX1L, RL7A, MAP1B, VIME, EIF3A, RGRF1, PABP1, FOXK1, EAA2, CBP, RFX1, SOX2, KPYM, CTBP2, GCP3, TB182, GMEB2, PI5PA, DOCK4, PCBP1, LIPA3, RS3, PAX6, KCNJ3, PP2BA, TBA4A, STAM1, NCOA1, CXB6, WNK1, PSME2, WBP2, SHPS1, NRSN1, CTNB1, PLAK, S30BP, NFIA, ZEP1, YES, CAPR2, MITF, GRD2I, Q0VF59, HDX, MA6D1, F171B, ZFHX2, MLXIP, PDLI7, PRC2C, CIART, YETS2, SRBP2, Q3U2K8, GSE1, RREB1, WNK2, DAB2P, ZEP2, AAK1, TNR6A, GRIN1, SRBS2, GRM5, Q3UZG4, RBM44, Q3ZB57, PHAR4, RESF1, Q5EBP8, UNKL, VP13A, COBL, KDM6B, PRSR1, Q5RIM6, SMG7, RBM27, TM1L2, Q5SVJ0, Q5SXC4, SIN3A, GAS7, CAPR1, KLF3, SIX4, AP180, GRID2, PACN1, LASP1, RAI1, NOTC3, SALL3, SPTB2, ARI3A, NUP62, PHC1, TFE3, PAN3, TIF1A, SF01, SYN2, SBNO1, CRTC1, RIPR1, GIT1, PKP4, ABLM3, ARMX2, CE170, Q6AXD2, NIPBL, FBX41, RPRD2, WWC2, Q6P1J1, Q6P5E3, UGGG1, SPRE3, Q6P9N8, AHDC1, PTN23, TRAK1, DLGP3, NYAP1, DHX29, NFRKB, MAGI1, Q6XZL8, CNOT1, SYNE2, IF2A, PICAL, PLPR4, PLPR3, CCNT2, PRC2A, MAP6, MCAF1, RERE, NU214, SESD1, UBP2L, C2C2L, CNKR2, SLIK5, RHG32, LPP, NELFA, C42S2, TB10B, TGO1, RFOX3, SP130, ANS1B, ZC3HE, ZC21A, BAIP2, EMSY, KAT6B, RELL2, LIPA2, CNOT4, TOX4, GASP2, CREST, KDM4A, GRIN3, KAT6A, ZN609, PAK5, A16L1, SI1L1, SH3R3, SKA3, RBM14, Q8C5J0, CNOT2, WDR26, UBA6, ANK2, DIDO1, SYNPO, VCIP1, FHI2A, NUP88, NED4L, SET1B, TNS2, OGT1, NAV1, STAU2, AFG32, S4A8, ZBT20, HS12A, GLT18, UNC5A, AGFG1, FRRS1, KCNQ3, PO121, T2FB, MTSS1, Q8R2E1, NUP35, MAVS, SGIP1, HNRL1, PP16B, CCG8, SFPQ, UBAP2, NCOA5, AJUBA, DCP1A, TWF1, ALS2, ETFD, CIC, GRIP1, GORS2, NONO, ZN281, CT2NL, RN111, ANR17, RTN4, PPP6, RBM7, CYGB, SARNP, DLGP1, SUN1, TM263, GON4L, PLIN3, MYPT1, NBEA, RENT1, ZN704, RBP2, ARHG7, RTN3, NUDT3, TULP4, Q9JIZ5, PAR6G, SCAM5, PRG4, ZN207, SRCN1, ASAP1, DREB, ULK2, ADDA, PCLO, UBQL2, FBX6, PCM1, SYT7, CRY2, FOXO1, MAST1, LYPA2, TEN3, GANP, DEMA, E41L3, ZO2, BAG6, E41L1, RM40, GRIA3, S4R294, V9GWU7, V9GX40
Species: Mus musculus
Download
Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Frontiers in aging 2021 2 35822049
Abstract:
O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.
O-GlcNAc proteins:
TANC2, AMRA1, CAMP1, SKT, AGRIN, KANL3, TTLL3, NHSL2, CTTB2, CCDC6, SHAN1, SYGP1, DPYL2, STXB1, CLOCK, NOTC2, VIAAT, CTND2, TPD53, REPS1, NLK, ACK1, SYUA, ATX2, PDLI1, ZFR, HCN1, BSN, TOM1, SYN1, GCR, EGR1, NFL, NFM, ATX1L, DERPC, KCC2A, CNTN1, HSPB1, MAP1B, G3P, ATF2, MTAP2, RS2, FOXK1, STAT3, AINX, EPB41, RFX1, LMNA, INPP, VATA, DVL1, CNBP, ATX1, NCAN, GOGA3, PTPA, GCP3, TB182, GMEB2, YTHD1, PI5PA, MRTFB, LIPA3, NACAM, TNIK, WNK1, NPTN, NEO1, S30BP, ZEP1, APOC2, EMAL1, RELCH, PRC2C, YETS2, FUBP2, QRIC1, LIMC1, DAB2P, ZEP2, AAK1, TNR6A, FCHO2, DRC1, SRBS2, GRM5, PACS2, OXR1, PHAR4, LIN54, MLIP, UNKL, SMG7, RBM27, CYFP2, SYNRG, SRC8, SKIL, NCOR1, LAMA5, HCFC1, P3C2A, SAP, APC, TOB1, AP180, FXR1, HS71A, LASP1, MAFK, M3K7, TAF6, ASPP1, SRBS1, DBNL, SH3G1, TLE4, IF4G2, MINT, ZYX, NUP62, OMGP, TFE3, SYN2, TBR1, RBL2, SBNO1, SLAI1, PKP4, SH3R1, JHD2C, ABLM3, ARMX2, LAR4B, HELZ, S23IP, RBM26, BCR, AHDC1, PAPD7, MFF, KMT2D, ERC2, NFRKB, WDFY3, GGYF2, TEX2, CNOT1, IF2A, PICAL, PLPR3, PRC2B, C2CD5, TPPP, ATX2L, MAP6, NAV3, AUXI, RIMB2, AVL9, NU214, AP4E1, UBP2L, C2C2L, IF4G3, ZN598, SHAN2, LPP, MYPT2, PHIPL, TB10B, CCD40, ZC3HE, DLGP2, ZC21A, BAIP2, EMSY, CLAP2, LIPA2, SRRM2, PAMR1, GEPH, YTHD3, POGZ, EPC2, SI1L1, RBM14, F126B, ANK2, CDAN1, SYNPO, VCIP1, TAB1, MEF2C, F193A, OGT1, EP400, EPN2, P66A, PDLI5, GTPBA, ZBT20, RTN1, BRD3, AGFG1, ABLM1, MRTFA, DC1L1, SPART, RFIP5, NUP35, WASF1, SC6A8, SGIP1, AGAP3, P66B, TAF9, WDR13, LRP5, UBAP2, BASP1, DCP1A, SYUB, TRFE, TRIM7, CIC, S12A6, GORS2, TAB2, EPN4, RNF34, ANR17, NECP1, FLIP1, ROA0, RBM33, TPD54, ODO2, DLGP1, FIP1, TM263, PLIN3, LNEBL, KC1D, NBEA, INP4A, RIMS2, RBP2, RTN3, NUDT3, ATR, ADRM1, FMN2, NCOA6, SON, ULK2, ADDA, MAGD1, MAP1A, GRM3, PCLO, GAB1, FBX6, NPAS3, GUAD, NCOR2, ATRN, NFAT5, DEMA, E41L3, SLIT3, CARM1, DYR1B, MECP2, E41L1, HDAC6
Species: Mus musculus
Download
Qin K, Zhu Y, Qin W, Gao J, Shao X, Wang YL, Zhou W, Wang C, Chen X. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. ACS chemical biology 2018 13(8) 30059200
Abstract:
Large-scale quantification of protein O-linked β- N-acetylglucosamine (O-GlcNAc) modification in a site-specific manner remains a key challenge in studying O-GlcNAc biology. Herein, we developed an isotope-tagged cleavable linker (isoTCL) strategy, which enabled isotopic labeling of O-GlcNAc through bioorthogonal conjugation of affinity tags. We demonstrated the application of the isoTCL in mapping and quantification of O-GlcNAcylation sites in HeLa cells. Furthermore, we investigated the O-GlcNAcylation sensitivity to the sugar donor by quantifying the levels of modification under different concentrations of the O-GlcNAc labeling probe in a site-specific manner. In addition, we applied isoTCL to compare the O-GlcNAcylation stoichiometry levels of more than 100 modification sites between placenta samples from male and female mice and confirmed site-specifically that female placenta has a higher O-GlcNAcylation than its male counterpart. The isoTCL platform provides a powerful tool for quantitative profiling of O-GlcNAc modification.
O-GlcNAc proteins:
A0A0A6YVU8, A0A1B0GSG7, RBM47, ZN335, A2A8N0, TITIN, SBNO1, CNOT1, PHRF1, ZN462, TAGAP, D3YUK0, E9PUR0, E9PVW1, E9PWI7, PARP4, E9PZS2, E9Q2C0, E9Q3G8, E9Q616, BD1L1, E9Q732, ARHG5, E9Q7N9, E9Q842, E9Q9B4, E9Q9Q2, E9QA22, E9QAE1, F6Y6L6, F8VQ29, F8VQM5, J9JI28, PDLI1, SPT5H, TAF4, ARI1A, ABLM1, KMT2D, MYPT1, ZN609, SET1A, SYNEM, PUR4, TNC18, KDM6A, DPOD2, M3K7, TPD54, SYNJ1, ZN207, SRPK2, ACK1, SYUA, MYPT2, KIF1B, HBP1, OGA, VINEX, PLIN3, MAFK, BRD4, PDLI1, KDM6A, SRPK1, N4BP1, ANR17, NCOR1, CREG1, CRTAP, MYO1A, MTR1L, CREG1, TOX4, SUN1, M3K6, PSMG1, SC24B, CNOT4, ABL1, ABL1, EGFR, LAMC1, LMNA, GLCM, GCR, HSPB1, PPBT, RLA2, ITB1, K1C18, K2C8, SAP, CATL1, LAMB1, ENPL, BGLR, NFIC, VIME, SNRPA, ROA1, ATX1L, TGAP1, GLI2, HLAC, CATB, TAU, BIP, FINC, K2C8, TPR, MSH3, ENPL, PO2F1, ATF2, GNS, ZEP1, RS2, MUC1, JUNB, ATF7, CATD, SON, SERPH, NELFE, BIP, ROA2, CBL, IF4B, APC, ARNT, MAP4, TEAD1, RXRA, RXRB, RXRG, CLIP1, AIMP1, HXA11, ELF1, NU214, MP2K2, VATA, CUX1, PBX2, MLH1, STAT3, SSRB, KI67, STT3A, RFX5, LMNA, DPOD2, PAXI, CDK8, YLPM1, NU153, RBP2, TAF6, EMD, PPT1, FXR1, ICAL, HCFC1, AGFG1, NUP98, ATX1, ATN1, PTN5, AF17, DSRAD, AMRP, ACYP2, NU107, ACOT8, S26A1, TB182, YTHD1, ASXL1, PI5PA, RIN3, MRTFB, RL37, KCNA2, RALA, STIM1, PITX1, IF4G2, SRPK2, RENBP, COG7, WNK1, SERF2, RPTN, SPSY, DAB2, RBM10, HNRPU, SPTB2, FOXK2, EWS, MEF2A, SP2, CO7A1, S30BP, NUCB1, ENL, IF4G1, K1C17, TLE3, TLE4, TOP1, SUH, CBG, ACK1, DEMA, AHNK, FOXO1, TROAP, BPTF, NFIA, ROA0, G3BP1, PABP4, ATM, PICAL, MAMD1, RIPK1, STIM1, MTMR1, CUL4B, ASPP2, KLF5, NFYC, CDK13, VEZF1, DSG2, TRI29, UBP2L, SRC8, PUM1, EPN4, RRP1B, NCOA6, DIP2A, MEF2D, NUMA1, R3HD1, KIF14, EBP, RCN1, KS6A1, RBMS2, TAF1C, NCOA2, SF01, JHD2C, MARE1, ELF2, TAB1, ZFHX3, ZYX, ADRM1, CCDC6, TAF9, STX1A, RFX7, QSER1, QRIC1, PRC2C, PBIP1, GSE1, TNR6A, CEAM5, Q3UKP4, COBL1, ARH40, SC31A, PEG3, SRBS2, Q3UU43, Q3UUE0, F91A1, ARBK2, Q497W2, Q4KL65, PHAR4, EPC2, CRTC2, BCORL, K2026, TGO1, PRC2B, TOIP1, SPG17, SHRM1, ZN362, LRIF1, RHG21, UBAP2, RBM26, RPRD2, ZN318, NCOR1, LAMA5, HCFC1, P3C2A, SAP, AP180, MAFK, SPTB2, SH3G1, ZYX, TSH3, INADL, WAPL, KAZRN, SBNO1, ARID2, DYH17, SAM9L, CDK13, LAR4B, BICRL, RHG21, HELZ, TTLL5, PANX2, PKHG2, NIPBL, LIN54, F135A, RPRD2, IF4G1, SPIC, SCYL2, NFRKB, INT1, ZN182, UGGG1, MDEAS, ZC3HE, RICTR, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NU188, CO039, UBN2, HAKAI, ASXL2, SPT6H, DDX46, KDM3B, PICAL, PRC2B, OOG2, ZIC5, NRK, POGZ, MAVS, CLAP1, EMSY, I2BP2, SRGP1, SH3R1, HUWE1, YTHD3, NU214, UBP2L, TMC5B, ZN598, TOPRS, SHAN2, Q80ZX0, ZNF18, Q810G1, BCL9L, LUZP1, PRSR1, DDX42, PALB2, P66A, GNS, LPP, TB10B, TGO1, Q8BIB6, ZN771, ZNT6, AAPK2, CNOT4, SP110, IFFO1, YTHD3, NCBP3, DEFI6, RBM14, CNOT2, CABS1, Q8C6L9, TCAL5, TAB1, SCYL2, ASPP2, PHC3, EPN2, PDLI5, I2BP1, RN135, AHNK2, NAV2, MISP, MGAP, ANKH1, PHAR4, XRN1, PELP1, Q8JZK6, Q8K0U8, AGFG1, TXD11, IL23R, ARHG6, SPART, SPICE, NUP93, CLASR, ZN786, SYNPO, FNBP4, ARFG1, ENAH, TNR6A, PHC3, SP20H, NAV1, VP37A, KMT2C, BD1L1, NUP35, STXB6, KNL1, TCAL3, MTSS1, SPART, NUP35, PUM2, STT3B, ALMS1, GEMI5, WIPF2, MAVS, UTP6, PI3R4, AMOT, P66B, STAG1, PCNP, LMO7, ATX2L, CSKI2, P66B, BBX, TITIN, HNMT, UBAP2, DCP1A, NRIF1, SMG7, RTF1, MAML1, ZN592, LAR4B, TAF4B, SHIP1, DDX17, RENT1, GPKOW, FUBP2, LPP, TTC28, PF21A, INT12, RCN3, CERS2, PDLI5, FUBP3, MY15B, ANCHR, CLP1L, Z512B, ZFR, EP400, NOL4L, RBM14, CIC, MED15, PIGS, DCR1C, SIN3A, MINT, EYA3, TEAD3, ATX2, RFC4, DHX58, ANX13, GORS2, TAB2, EPN4, ANR17, DPH2, WAC, DIDO1, YTHD1, AMRA1, TANC1, TXD12, F133B, RBM33, GPI8, Q9D2U0, ZC21B, FUND2, F162A, APMAP, Q9D809, FIP1, CNPY3, Q9DAV5, Q9DB24, ALG2, PLIN3, MYPT1, WWTR1, Q9EQC8, SALL1, RBP2, GILT, MFF, SP130, APC1, I2BPL, RBNS5, EPC1, ADNP, ZN106, TM245, CPVL, PTN23, WNK1, E41L1, ZHX3, ZN335, PKHG2, CCSE2, CQ10B, MLXIP, PKHA5, RC3H2, TAF9B, ZBT20, NCOA5, ZN532, APMAP, HYOU1, ADRM1, GIT2, BAG3, UBN1, PDLI7, DIAP3, RBM12, CARF, ETAA1, HXC10, TAB2, UGGG1, CDK12, ITSN2, CNOT2, TMEM9, DAPLE, NYAP2, KANL3, SON, LIMD1, KI21B, KI21A, PPIE, PCM1, GALK1, MRP5, SE1L1, LIMD1, TCF20, SUN2, AFF4, UBQL2, S30BP, NRBP, SIX4, TASOR, GMEB2, PARP4, NUP50, ZHX1, YETS2, HECD1, SCAF8, SRRM2, SCML2, S22AL, NCOR2, DEMA, POLH, R3HD2, ZN281, FBX7, RPGF2, IRS2, HYOU1, PRC2C, NCOR2, GMEB1, S23IP, SRPK3, Q9Z0I7, VNN1, KLK4, SE1L1, RGS6, E41L1
Download
Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG 2nd, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proceedings of the National Academy of Sciences of the United States of America 2012 109(19) 22517741
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.
O-GlcNAc proteins:
ZEP3, CAMP1, FRPD1, SKT, DLGP4, DPYL2, STXB1, MAP2, NUMBL, M3K5, NOTC2, CTND2, CSK22, ACK1, SYUA, ATX2, ZFR, BSN, GCR, EGR1, NFL, NFM, RC3H2, MAMD1, ATX1L, DERPC, NCAM1, MAP1B, G3P, ATF2, MAP4, KCC2B, AIMP1, FOXK1, STAT3, AINX, NEDD4, RP3A, DVL1, GOGA3, FOXP1, TB182, GMEB2, PI5PA, MRTFB, DOCK4, ABI2, KCNJ3, NCOA1, RGRF2, TNIK, WNK1, G3BP2, MPRIP, XRN1, RLA2, S30BP, NFIA, MARK3, ENAH, PGBM, CDK12, MA6D1, PHAR1, PSD3, NELL1, PRC2C, YETS2, FOXK2, WNK2, LIMC1, TNR6C, AGAP2, ZEP2, AAK1, TNR6A, CAMKV, PKHA7, GRIN1, FCHO2, GARL3, STOX2, UBN1, ABL2, CDV3, PHAR4, TAB3, NUFP2, UNKL, OSBP2, RBM27, CYFP2, TM1L2, ANR40, NACAD, SIN3A, NCOR1, LAMA5, NCOA2, AP180, RAI1, M3K7, TAF6, SRBS1, SH3G1, TLE4, MINT, ZYX, SF01, SYN2, TBR1, SBNO1, CRTC1, GIT1, SLAI1, PKP4, CDK13, RHG23, SH3R1, JHD2C, HECD1, ABLM3, ARMX2, LAR4B, RHG21, FBX41, RPRD2, WWC2, ZN532, BCR, DLGP3, NYAP1, GMIP, NFRKB, MAGI1, CNOT1, NU188, PICAL, SMAP2, SPAG7, PRC2B, ATX2L, MAP6, MCAF1, PHF24, NAV3, AUXI, RERE, RIMB2, PUM1, NU214, KCMF1, EPN1, AGFG2, UBP2L, C2C2L, CNKR2, ZN598, SHAN2, MAST4, RHG32, MYPT2, TB10B, FRM4A, SP130, DLGP2, ZNT6, ABLM2, EMSY, CLAP2, CNOT4, PAMR1, CREST, IFFO1, OSBL6, YTHD3, TM266, SI1L1, SH3R3, RBM14, CNOT2, ANK2, DIDO1, SYNPO, VCIP1, TAB1, SCYL2, ASPP2, F193A, OGT1, NAV1, SYNJ1, RPGF2, EP400, P66A, PDLI5, SCAM1, HS12A, AGFG1, I2BPL, PO121, ABLM1, SPART, RFIP5, CS047, SIR2, AMOT, CCG8, ZCH14, WDR13, UBAP2, NCOA5, FRS3, ZFN2B, BASP1, DCP1A, SRGP2, SRGP1, SYUB, CLIP1, UBXN1, GORS2, EPN4, RB6I2, ANR17, RTN4, TXD12, NECP1, DLGP1, FIP1, F135B, TM263, PLIN3, MYPT1, CRIP2, TSC1, NBEA, RIMS2, ZN704, RBP2, RTN3, 4ET, ELF2, NUDT3, FMN2, NCOA6, SRCN1, ASAP1, RAD1, SON, PLEC, ULK2, ADDA, PCLO, HIPK2, SH2D3, YLPM1, RHG07