REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (5 results)


Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angewandte Chemie (International ed. in English) 2023 36852467
Abstract:
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
O-GlcNAc proteins:
AMRA1, SETX, SKT, BCORL, AGRIN, MGAP, ARI1A, KANL3, CHD6, PHRF1, ZCH24, EP300, KIF7, KI67, CE350, ANR11, NUMA1, TPR, MORC3, TAF4B, KMT2B, EMD, AKAP1, TCOF, DCTN1, MNT, NCOA3, ATN1, ECP3, DPOD2, CTND2, PIAS3, AF10, ACK1, GET3, DSG2, ESS2, ATX2, PDLI1, ULK1, BARD1, KDM6A, ZN106, NSD1, ZFR, HIPK1, SETB1, LAMC1, MYCN, GCR, EGR1, RC3H2, ATX1L, DERPC, K2C8, HSPB1, JUND, FGFR1, G3P, ATF2, COF1, HEXB, VIME, PO5F1, CBL, CCNB1, PO2F1, RS2, NFKB1, MAX, PABP1, NEDD1, PTN12, FMR1, ELK1, FOXK1, STAT3, SOX15, PLIN2, CBP, NEDD4, YAP1, RFX1, SOX2, LMNA, ROA1, S1PR2, ARNT, RD23A, PLTP, KMT2A, KLF16, FOXP1, TB182, GMEB2, SENP1, YTHD1, MRTFB, DOCK4, STIM1, TBX3, NCOA1, ERF, SIAE, NACAM, ATF1, WNK1, G3BP2, DNLI3, G3BP1, RLA2, GABPA, S30BP, ZEP1, ENAH, SOX13, CAPR2, APLP2, CLUS, TLE3, GATA4, MITF, CHD8, ZCH18, TANC1, CDK12, SAP25, LIN41, MLXIP, HROB, VRTN, CO039, PDLI7, SMCA4, PRC2C, MILK2, MIDN, YETS2, PBIP1, FUBP2, TFPT, SRBP2, GSE1, F117B, ZN865, WDR62, QRIC1, FOXK2, RREB1, TNR6C, DAB2P, TNR6A, RHG17, PKHA7, COBL1, FCHO2, TET1, ARMX5, GARL3, TET2, CDV3, PHAR4, C2CD3, LIN54, NPA1P, TAB3, TASO2, RESF1, NUFP2, UNKL, COBL, KDM6B, PRSR1, SMG7, RBM27, PHF12, ZDBF2, PUR4, SYNRG, UIMC1, SIN3A, NFAC2, SRC8, SKIL, ELF1, KLF4, NCOR1, KLF3, NCOA2, FOXD3, PAPOA, HCFC1, P3C2A, SIX4, ZFHX3, TOB1, AP180, GLI3, ATRX, MAFK, NPM, M3K7, DAG1, SPTB2, TAF6, TIF1B, SPT6H, SH3G1, ARI3A, TLE1, TLE4, IF4G2, MINT, ZIC3, ZYX, NUP62, PHC1, TFE3, TIF1A, SF01, DAZL, RBL1, KNL1, BCL9L, SBNO1, SLAI1, PKP4, CDK13, SH3R1, JHD2C, HECD1, ARMX2, LAR4B, RHG21, HELZ, SCAF8, UTF1, PKHG2, NIPBL, CCD66, F135A, RPRD2, WWC2, ZN532, KRBA1, TAF9B, RBM26, INT1, BCR, AHDC1, PTN23, PAPD7, KDM3A, KMT2D, CHD4, RN220, NUP98, NFRKB, GGYF2, LCOR, TEX2, PF21A, KDM3B, FNBP4, CNOT1, LARP1, RHG26, NU188, CNDD3, PICAL, SPAG5, HUWE1, SMAP2, CPEB3, MYCB2, PRC2B, PRR14, MACOI, ATX2L, CKP2L, PRC2A, MCAF1, SI1L2, KANL1, ERBIN, R3HD2, RERE, PUM2, PUM1, NU214, WNK4, TCAM1, SAS6, CAMP3, UBN2, TNC18, AGFG2, UBP2L, WNK3, ZN598, CTIP, SHAN2, NANOG, DDX42, RHG32, VGLU3, LPP, TET3, MYPT2, IF4B, CNO10, MISSL, TB10B, CARF, TGO1, ZN879, SP130, ZC3HE, ZNT6, SUN2, TNR6B, ARI5B, EMSY, BNC2, KAT6B, KMT2C, CLAP2, CNOT4, SRRM2, TOX4, GEPH, SYP2L, LARP4, KANK2, SALL4, YTHD3, TOIP2, KAT6A, ASXL2, POGZ, SREK1, TAF5, ZHX2, EPC2, SI1L1, CND2, RBM14, SUCO, CNOT2, DIDO1, SMAG1, LENG8, CDAN1, DPPA4, LRIF1, VCIP1, MB214, TAB1, SCYL2, ASPP2, LS14B, SYEP, F193A, BCOR, OGT1, SUGP1, NAV1, SYNJ1, ADNP2, RPGF2, BICRL, EP400, PHC3, VP37A, EPN2, P66A, PDLI5, ELYS, ZBT20, ANLN, AGFG1, MATR3, CASC3, I2BPL, PO121, ALMS1, SF3A1, GRHL2, ATF7, CACL1, DC1L1, MTSS1, SPART, TDIF2, HBP1, NUP58, RFIP5, BRD8, WIPI1, CDK8, CS047, ATX7, NUP35, LUZP1, RPAP2, NDC1, MAVS, AMOT, CSKI2, P66B, TAF9, IPO4, ZCH14, UBAP2, NCOA5, FUBP1, RBM47, AJUBA, VPS36, DCP1A, EGLN2, YTHD2, SRGP2, GRHL1, BCL7B, P4R3B, PLRG1, CIC, WAC, TRPS1, MED1, ACATN, NRBP, RP25L, NONO, TAB2, RBM10, EPN4, DDAH2, NOG2, ZN281, HGS, NASP, ARIP4, ANR17, ZN318, TRI33, MZT2, ZWINT, ECD, YIF1B, ROA0, DHRS7, TPD54, SSBP3, PSRC1, SARNP, BCL9, SP2, NOP56, SH24A, FIP1, PLIN3, MYPT1, KC1D, TCF20, TOR3A, SALL1, ZN704, RBP2, UBE4B, TBX20, AFF4, RBCC1, 4ET, PALLD, ELF2, TSSC4, NUDT3, HAKAI, ADRM1, NCOA6, FANCA, GIT2, BAG3, TOB2, ZN207, SON, TBL1X, PLEC, MACF1, GOGA5, QKI, GAB1, DMRT1, YLPM1, PCM1, RHG07, TAF7, FOXO1, ADA23, AKA12, UXT, MAN1, NCOR2, AKT3, COR1B, TNIP1, GANP, DEMA, CARM1, RGAP1, ITSN2, ZO2, KLF5, ADNP, ARI3B, BCL3, SE1L1, E41L1, ZN292
Species: Mus musculus
Download
Deracinois B, Camoin L, Lambert M, Boyer JB, Dupont E, Bastide B, Cieniewski-Bernard C. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Journal of proteomics 2018 186 30016717
Abstract:
The O-linked-N-acetyl-d-glucosaminylation (O-GlcNAcylation) modulates numerous aspects of cellular processes. Akin to phosphorylation, O-GlcNAcylation is highly dynamic, reversible, and responds rapidly to extracellular demand. Despite the absolute necessity to determine post-translational sites to fully understand the role of O-GlcNAcylation, it remains a high challenge for the major reason that unmodified proteins are in excess comparing to the O-GlcNAcylated ones. Based on a click chemistry approach, O-GlcNAcylated proteins were labelled with azido-GalNAc and coupled to agarose beads. The proteome extracted from C2C12 myotubes was submitted to an intensive fractionation prior to azide-alkyne click chemistry. This combination of fractionation and click chemistry is a powerful methodology to map O-GlcNAc sites; indeed, 342 proteins were identified through the identification of 620 peptides containing one or more O-GlcNAc sites. We localized O-GlcNAc sites on proteins involved in signalling pathways or in protein modification, as well as structural proteins. Considering the recent role of O-GlcNAcylation in the modulation of sarcomere morphometry and interaction between key structural protein, we focused on proteins involved in the cytoarchitecture of skeletal muscle cells. In particular, several O-GlcNAc sites were located into protein-protein interaction domains, suggesting that O-GlcNAcylation could be strongly involved in the organization and reorganization of sarcomere and myofibrils.
Species: Mus musculus
Download
Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG 2nd, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proceedings of the National Academy of Sciences of the United States of America 2012 109(19) 22517741
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.
O-GlcNAc proteins:
ZEP3, CAMP1, FRPD1, SKT, DLGP4, DPYL2, STXB1, MAP2, NUMBL, M3K5, NOTC2, CTND2, CSK22, ACK1, SYUA, ATX2, ZFR, BSN, GCR, EGR1, NFL, NFM, RC3H2, MAMD1, ATX1L, DERPC, NCAM1, MAP1B, G3P, ATF2, MAP4, KCC2B, AIMP1, FOXK1, STAT3, AINX, NEDD4, RP3A, DVL1, GOGA3, FOXP1, TB182, GMEB2, PI5PA, MRTFB, DOCK4, ABI2, KCNJ3, NCOA1, RGRF2, TNIK, WNK1, G3BP2, MPRIP, XRN1, RLA2, S30BP, NFIA, MARK3, ENAH, PGBM, CDK12, MA6D1, PHAR1, PSD3, NELL1, PRC2C, YETS2, FOXK2, WNK2, LIMC1, TNR6C, AGAP2, ZEP2, AAK1, TNR6A, CAMKV, PKHA7, GRIN1, FCHO2, GARL3, STOX2, UBN1, ABL2, CDV3, PHAR4, TAB3, NUFP2, UNKL, OSBP2, RBM27, CYFP2, TM1L2, ANR40, NACAD, SIN3A, NCOR1, LAMA5, NCOA2, AP180, RAI1, M3K7, TAF6, SRBS1, SH3G1, TLE4, MINT, ZYX, SF01, SYN2, TBR1, SBNO1, CRTC1, GIT1, SLAI1, PKP4, CDK13, RHG23, SH3R1, JHD2C, HECD1, ABLM3, ARMX2, LAR4B, RHG21, FBX41, RPRD2, WWC2, ZN532, BCR, DLGP3, NYAP1, GMIP, NFRKB, MAGI1, CNOT1, NU188, PICAL, SMAP2, SPAG7, PRC2B, ATX2L, MAP6, MCAF1, PHF24, NAV3, AUXI, RERE, RIMB2, PUM1, NU214, KCMF1, EPN1, AGFG2, UBP2L, C2C2L, CNKR2, ZN598, SHAN2, MAST4, RHG32, MYPT2, TB10B, FRM4A, SP130, DLGP2, ZNT6, ABLM2, EMSY, CLAP2, CNOT4, PAMR1, CREST, IFFO1, OSBL6, YTHD3, TM266, SI1L1, SH3R3, RBM14, CNOT2, ANK2, DIDO1, SYNPO, VCIP1, TAB1, SCYL2, ASPP2, F193A, OGT1, NAV1, SYNJ1, RPGF2, EP400, P66A, PDLI5, SCAM1, HS12A, AGFG1, I2BPL, PO121, ABLM1, SPART, RFIP5, CS047, SIR2, AMOT, CCG8, ZCH14, WDR13, UBAP2, NCOA5, FRS3, ZFN2B, BASP1, DCP1A, SRGP2, SRGP1, SYUB, CLIP1, UBXN1, GORS2, EPN4, RB6I2, ANR17, RTN4, TXD12, NECP1, DLGP1, FIP1, F135B, TM263, PLIN3, MYPT1, CRIP2, TSC1, NBEA, RIMS2, ZN704, RBP2, RTN3, 4ET, ELF2, NUDT3, FMN2, NCOA6, SRCN1, ASAP1, RAD1, SON, PLEC, ULK2, ADDA, PCLO, HIPK2, SH2D3, YLPM1, RHG07, TEN1, NCOR2, COR1B, TNIP1, DEMA, E41L3, SYUG, APCL, MECP2, E41L1
Species: Mus musculus
Download
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlin