REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (5 results)


Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells. The Journal of biological chemistry 2017 292(11) 28100784
Abstract:
O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.
Ma J, Banerjee P, Whelan SA, Liu T, Wei AC, Ramirez-Correa G, McComb ME, Costello CE, O'Rourke B, Murphy A, Hart GW. Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of proteome research 2016 15(7) 27213235
Abstract:
O-linked β-N-acetylglucosamine (O-GlcNAc), a post-translational modification on serine and threonine residues of many proteins, plays crucial regulatory roles in diverse biological events. As a nutrient sensor, O-GlcNAc modification (O-GlcNAcylation) on nuclear and cytoplasmic proteins underlies the pathology of diabetic complications including cardiomyopathy. However, mitochondrial O-GlcNAcylation, especially in response to chronic hyperglycemia in diabetes, has been poorly explored. We performed a comparative O-GlcNAc profiling of mitochondria from control and streptozotocin (STZ)-induced diabetic rat hearts by using an improved β-elimination/Michael addition with isotopic DTT reagents (BEMAD) followed by tandem mass spectrometric analysis. In total, 86 mitochondrial proteins, involved in diverse pathways, were O-GlcNAcylated. Among them, many proteins have site-specific alterations in O-GlcNAcylation in response to diabetes, which suggests that protein O-GlcNAcylation is a novel layer of regulation mediating adaptive changes in mitochondrial metabolism during the progression of diabetic cardiomyopathy.
Download
Ma J, Liu T, Wei AC, Banerjee P, O'Rourke B, Hart GW. O-GlcNAcomic Profiling Identifies Widespread O-Linked β-N-Acetylglucosamine Modification (O-GlcNAcylation) in Oxidative Phosphorylation System Regulating Cardiac Mitochondrial Function. The Journal of biological chemistry 2015 290(49) 26446791