REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (7 results)


Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular & cellular proteomics : MCP 2021 20 34678516
Abstract:
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease.
O-GlcNAc proteins:
IQIP1, A0A0A6YWG7, A0A0G2JF55, A0A0N4SW93, A0A0R4J060, A0A0U1RPL0, A0A140LIW3, A0A140T8K9, A0A1B0GS41, A0A1B0GS91, A0A1D5RMI8, A0A1L1M1J8, A0A1L1SR84, A0A1N9NPH8, A0A1Y7VNZ6, A0A286YDB3, A0JNY3, A2A482, A2A654, TANC2, LZTS3, AJM1, BCORL, A2AUD5, A2AWN8, B1ASA5, B1ATC3, B1AUX2, B2RQL0, CSPP1, B2RY58, B7ZNA5, CTTB2, D3YU22, D3YUV1, D3YWX2, D3YZ21, SHAN1, D3Z5K8, E0CXZ9, E9PU87, E9PUL3, PRRT2, E9PUR0, E9PV26, E9PVY8, SET1A, E9Q0N0, E9Q3E2, E9Q3G8, E9Q4K0, ARI1B, SETD2, E9Q6H8, E9Q6L9, E9Q828, E9Q9C0, E9Q9Y4, E9QAQ7, E9QAU4, E9QAU9, E9QKI2, E9QLZ9, E9QM77, F2Z3U3, F6RQA2, SYGP1, F7C376, BICRA, F8VQL9, F8WIS9, G3UZM1, G3X8R8, G3X928, RFIP2, H3BKF3, H3BKP8, H9KV00, J3QNT7, DPYL2, PRDX6, MNT, NUMBL, PEX5, BMPR2, CTND2, PITM1, ACK1, CAC1B, SYUA, DSG2, SPT5H, E41L2, SP3, KDM6A, CPNS1, ZFR, HCN1, CTBP1, BSN, STAM2, SYN1, MBP, EGR1, NFL, NFM, ITB1, RC3H2, ATX1L, RL7A, MAP1B, VIME, EIF3A, RGRF1, PABP1, FOXK1, EAA2, CBP, RFX1, SOX2, KPYM, CTBP2, GCP3, TB182, GMEB2, PI5PA, DOCK4, PCBP1, LIPA3, RS3, PAX6, KCNJ3, PP2BA, TBA4A, STAM1, NCOA1, CXB6, WNK1, PSME2, WBP2, SHPS1, NRSN1, CTNB1, PLAK, S30BP, NFIA, ZEP1, YES, CAPR2, MITF, GRD2I, Q0VF59, HDX, MA6D1, F171B, ZFHX2, MLXIP, PDLI7, PRC2C, CIART, YETS2, SRBP2, Q3U2K8, GSE1, RREB1, WNK2, DAB2P, ZEP2, AAK1, TNR6A, GRIN1, SRBS2, GRM5, Q3UZG4, RBM44, Q3ZB57, PHAR4, RESF1, Q5EBP8, UNKL, VP13A, COBL, KDM6B, PRSR1, Q5RIM6, SMG7, RBM27, TM1L2, Q5SVJ0, Q5SXC4, SIN3A, GAS7, CAPR1, KLF3, SIX4, AP180, GRID2, PACN1, LASP1, RAI1, NOTC3, SALL3, SPTB2, ARI3A, NUP62, PHC1, TFE3, PAN3, TIF1A, SF01, SYN2, SBNO1, CRTC1, RIPR1, GIT1, PKP4, ABLM3, ARMX2, CE170, Q6AXD2, NIPBL, FBX41, RPRD2, WWC2, Q6P1J1, Q6P5E3, UGGG1, SPRE3, Q6P9N8, AHDC1, PTN23, TRAK1, DLGP3, NYAP1, DHX29, NFRKB, MAGI1, Q6XZL8, CNOT1, SYNE2, IF2A, PICAL, PLPR4, PLPR3, CCNT2, PRC2A, MAP6, MCAF1, RERE, NU214, SESD1, UBP2L, C2C2L, CNKR2, SLIK5, RHG32, LPP, NELFA, C42S2, TB10B, TGO1, RFOX3, SP130, ANS1B, ZC3HE, ZC21A, BAIP2, EMSY, KAT6B, RELL2, LIPA2, CNOT4, TOX4, GASP2, CREST, KDM4A, GRIN3, KAT6A, ZN609, PAK5, A16L1, SI1L1, SH3R3, SKA3, RBM14, Q8C5J0, CNOT2, WDR26, UBA6, ANK2, DIDO1, SYNPO, VCIP1, FHI2A, NUP88, NED4L, SET1B, TNS2, OGT1, NAV1, STAU2, AFG32, S4A8, ZBT20, HS12A, GLT18, UNC5A, AGFG1, FRRS1, KCNQ3, PO121, T2FB, MTSS1, Q8R2E1, NUP35, MAVS, SGIP1, HNRL1, PP16B, CCG8, SFPQ, UBAP2, NCOA5, AJUBA, DCP1A, TWF1, ALS2, ETFD, CIC, GRIP1, GORS2, NONO, ZN281, CT2NL, RN111, ANR17, RTN4, PPP6, RBM7, CYGB, SARNP, DLGP1, SUN1, TM263, GON4L, PLIN3, MYPT1, NBEA, RENT1, ZN704, RBP2, ARHG7, RTN3, NUDT3, TULP4, Q9JIZ5, PAR6G, SCAM5, PRG4, ZN207, SRCN1, ASAP1, DREB, ULK2, ADDA, PCLO, UBQL2, FBX6, PCM1, SYT7, CRY2, FOXO1, MAST1, LYPA2, TEN3, GANP, DEMA, E41L3, ZO2, BAG6, E41L1, RM40, GRIA3, S4R294, V9GWU7, V9GX40
Species: Mus musculus
Download
Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature chemical biology 2021 34887587
Abstract:
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.
O-GlcNAc proteins:
A0A075B5P4, A0A087WNV1, A0A087WPT1, A0A087WQF8, A0A087WS88, A0A0A0MQM6, A0A0A6YVP0, A0A0A6YY72, A0A0B4J1E2, A0A0G2JFJ6, A0A0G2JFN8, A0A0G2JFY0, A0A0G2JG10, A0A0G2JG59, A0A0G2JG60, A0A0G2JG65, A0A0G2JGL8, A0A0H2UH17, A0A0J9YTU3, A0A0J9YUT8, A0A0J9YUY8, A0A0N4SV00, A0A0N4SV32, A0A0N4SW94, A0A0N5E9G7, A0A0R4J060, A0A0R4J169, A0A0R4J1E3, A0A0R4J1Y4, A0A0R4J260, A1BN54, A1L341, A1L3S7, A2A485, A2A513, A2A5N3, A2A8V8, A2AGK3, LZTS3, A2AM70, A2AMY5, A2APQ6, A2AS44, A2AVJ7, A2AWT6, A2BGG7, KANL3, K1C28, A6X8Z3, A8Y5K6, B0V2N8, B1AU25, TBD2A, THOC2, TPC11, PLXB2, RBM25, B7FAU9, B7ZWM8, B8JK33, B9EHJ3, D3YTT9, D3YUW7, D3YV30, D3YV43, D3YVH4, D3YX49, D3YX64, D3YX85, SAFB1, D3YYT0, D3YZ62, D3YZL1, D3YZT4, D3Z1X3, D3Z2H7, D3Z3E8, D3Z4B0, CCD78, D3Z6N3, CILP2, D6RCG1, E0CY31, E0CYH0, E9PUA5, E9PUJ2, E9PUX0, GCN1, E9PVC6, E9PVG8, KI67, E9PW24, E9PYF4, SET1A, E9PYI8, E9PZW0, E9Q066, E9Q0F0, E9Q0M9, E9Q0U7, E9Q0Y4, E9Q133, E9Q166, E9Q175, E9Q1Z0, E9Q2X6, E9Q3G8, NOLC1, E9Q5F6, E9Q616, MYO1E, E9Q6A9, E9Q6M7, E9Q6T8, E9Q8F0, E9Q9C7, E9Q9H2, E9QA74, E9QAT0, E9QKG6, E9QLM4, E9QN31, E9QNH6, E9QNN1, E9QPE7, E9QPI5, F2Z480, F6S6G6, F6T0G2, F6TFN2, F6TW20, F6WTC8, F6XWD4, F6YRW4, F6YUI5, F7B296, F7C312, FARP1, F8VPX1, F8VQ29, F8WHR6, G3UWP5, G3UWZ0, G3UX48, G3UYD0, G3UYG6, G3UYW3, G3UYZ0, G3X8P9, G3X8Q0, G3X956, SI1L3, G5E839, G5E846, G5E866, G5E879, G5E8C3, G5E8J8, G5E8N3, G5E8T6, H3BJU7, H3BKF6, H3BKM0, H3BKN0, H3BKT5, H3BL49, J3QMC5, J3QNW0, CAN2, ATN1, SRSF5, IMA3, PININ, EIF3D, ATX2, E41L2, UGDH, SP3, IF2B1, ZFR, HIPK1, IGKC, IGHG1, HBA, K2C1, TBA1B, ALBU, HS90A, NUCL, ATX1L, EF1A1, H2B1F, CO1A1, HS90B, TCPA, GELS, HS71L, AP2A2, K1C19, BIP, VIME, MFGM, EIF3A, MCM3, MOES, CTNA1, U2AF2, PDIA3, GRN, PABP1, FKBP4, KIF4, TSP1, GRP75, TKT, BCL6, FOXK1, H14, NEDD4, LMNA, MCM5, K2C6A, IMA1, KPYM, DDX6, ACTN4, EF2, ASXL1, ACTB, ABCE1, RRAS2, H4, HSP7C, CH60, TBA1A, TBB4B, H31, IMB1, TCPB, TCPE, TCPZ, WNK1, H32, MPRIP, G3BP1, TBB5, HNRL2, TOP2A, UBA1, PLAK, IF2P, EPS8, LRIQ1, ZCH18, LMTD2, FA83H, CDCA2, CYTSA, SPP2B, Q3TJ56, K22E, FUBP2, Q3U6F1, Q3U8S1, FOXK2, PUF60, Q3UID0, Q3UJB0, Q3UNN4, SFSWA, K22O, CFA74, Q3UYN2, LRRF1, ESF1, KIF22, Q3V3Y9, Q45VK5, Q4FJZ2, Q4KL80, Q4TU83, PDS5B, DDX17, LRC47, Q52KR6, TR150, NEXMI, JCAD, NUFP2, PRSR1, RBM27, PHF12, UTP18, LC7L3, Q5SUT0, TSR1, MYO1D, Q5U4C5, SIN3A, SRC8, MYL6, STIP1, CAPR1, IMA5, LAP2A, HCFC1, K1C15, SMRD1, FXR1, DDX5, HS71A, SERA, KINH, MYH10, SIN3B, DDX3X, TIF1B, NUP62, K1C12, SQSTM, TOP2B, Q68EM3, CLH1, CDC5L, F120A, CNDG2, NOP58, SCAF8, K1C42, K2C1B, SR140, ZC11A, ABCF1, RRP12, Q6P5B5, UGGG1, XPO1, KIF11, FHOD1, LPPRC, NUP98, Q6PGF5, NEB2, DAPLE, UBE2O, LARP1, NU188, WDR43, 2AAA, Q792Z1, PICAL, UHRF2, MBB1A, Q7TQE2, NU214, WNK4, KIRR1, UBP2L, FLNB, WNK3, Q80ZX0, LPP, ACTBL, P4HTM, MYPT2, HTSF1, IF4B, Q8BGJ5, NU107, WDR3, NOC4L, CE128, NUP93, SUN2, RCC2, EMSY, SYLC, CKAP4, SRRM2, NUP54, PWP2, SYIC, RL1D1, MAP1S, TTC34, SI1L1, RBM14, Q8C872, DIDO1, ATAD2, NUP88, Q8CFQ9, SMC2, UACA, SYEP, TCRG1, OGT1, CCAR1, SLTM, BICRL, P66A, COPA, HMCS1, Q8JZN2, EIF3B, BCLF1, PHLB2, NAT10, ANLN, SDHA, LS14A, MATR3, DDX18, PO121, EIF3L, HNRPL, NU133, EIF3C, ZC3HA, TDIF2, NUP58, CD109, LUZP1, UTP6, MYH9, UHRF1, VIGLN, CCAR2, CUL7, K2C79, Q8VGW3, RBM39, DHX36, SFPQ, ACLY, DDX1, U3IP2, SYYC, RPN1, YTHD2, BMP2K, SNX18, SMCA5, Q921K2, SF3B3, DDX27, Q921S6, SMTN, PP6R3, K2C5, DEN2B, NXF1, NONO, ACON, NMD3, RTCB, CT2NL, HSP7E, NU155, IF2B3, Q9CPN9, SMC1A, SMC3, CXXC1, GARS, CEP72, SC23B, Q9D6D0, NOP56, FIP1, SPB1, MYPT1, NVL, EIF3F, RAI14, RENT1, CPSF1, PESC, VPS35, LIMA1, DKC1, PALLD, NUP50, DDX21, FLII, YBOX3, IQGA1, Q9QUK9, CAF1A, K1C17, MAGD1, MTA2, PR40A, MYO1C, COR1C, E41L3, EHD1, WDR46, ZO2, NU160, ADNP, SYVC, Q9Z1R9, BAZ1B, K1C16, SNUT1, S4R2A9, S4R2J9, V9GX87
Species: Mus musculus
Download
Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T, Lin KI. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nature communications 2017 8(1) 29187734
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) catalyzes O-GlcNAc modification. O-GlcNAcylation is increased after cross-linking of the B-cell receptor (BCR), but the physiological function of this reaction is unknown. Here we show that lack of Ogt in B-cell development not only causes severe defects in the activation of BCR signaling, but also perturbs B-cell homeostasis by enhancing apoptosis of mature B cells, partly as a result of impaired response to B-cell activating factor. O-GlcNAcylation of Lyn at serine 19 is crucial for efficient Lyn activation and Syk interaction in BCR-mediated B-cell activation and expansion. Ogt deficiency in germinal center (GC) B cells also results in enhanced apoptosis of GC B cells and memory B cells in an immune response, consequently causing a reduction of antibody levels. Together, these results demonstrate that B cells rely on O-GlcNAcylation to maintain homeostasis, transduce BCR-mediated activation signals and activate humoral immunity.
O-GlcNAc proteins:
FAIM3, K1109, BCORL, M3K15, KANL3, EXC6B, PLHD1, CTTB2, MYO1E, SCLT1, TAF4B, TCOF, FLOT1, OXLA, HDAC1, SYPL1, SEM4D, MA2B1, PPE2, PLD3, DPOD2, NOCT, HNRH1, API5, DFFA, DHX9, MMP8, DPM1, EIF3D, ESS2, CTNL1, VTI1B, S28A2, FA5, CO4B, IGKC, LAC1, IGHA, IGHDM, HA11, LAMC1, TBA1B, LDHA, HVM51, SPTA1, ZFP1, EGR1, ENPL, RPB1, ITB1, ENV1, 4F2, HS90B, HA2B, HB2A, CD44, BLK, CN37, LAMP2, ZFP37, PTBP1, HB2I, BASI, FAS, EVI2A, MDR1A, BGAL, ITAL, LYN, TLN1, MOES, U2AF2, MAP4, GNA13, RL3, CATG, DPP4, PTN6, HEXA, NKTR, HMGB2, SUH, CEAM1, GTR3, DRG1, RAB5C, CD22, FMR1, VGFR1, GRP75, CAP1, ECI1, FOXK1, STAT1, NKX25, TCPQ, H11, H13, IL12B, CAPZB, RL5, VDR, RET3, ADCY7, VA0D1, AAAT, IMA1, STOM, FUS, NICA, RU2A, EF2, AAAS, RUVB1, ABCE1, DCAF7, HNRPK, 1433G, ACTA, RS6, VATB2, RL23, RL8, PP2BA, RACK1, TBB4B, M4K1, ITPR3, SURF6, ELAV1, EVL, H2B1A, AT8A1, TCPH, TCPB, NXN, TBB5, HNRL2, CREB1, PLAK, 3MG, CO6A1, LG3BP, COE1, CNN2, NSUN2, HMHA1, SNUT2, SMCA4, TPC10, TGRM2, I20L2, LMF1, PUF60, ZSWM8, PRRC1, SC31A, CPZIP, ITAD, ULK4, ITA1, DYHC2, LIN54, JKIP3, GRHL3, MYO1G, SIN3A, IRAG2, SAMH1, KHDR1, LY75, RASA3, NPT2A, CAPR1, ARHG2, PML, IMA5, LAP2B, PRP4B, M4K2, TS101, ARHG1, PLSL, CTNA2, VSX2, CD37, SERA, PCBP2, TIF1B, COCH, NUP62, RALY, UT14A, ARG39, CLH1, ATS16, F120A, NOP58, TEDC2, U520, RRP12, SMHD1, ANO6, TTBK1, CHD4, SARM1, NUP98, RASL2, TNKS1, AT1A2, NFRKB, DDX55, DNA2, H2B1C, CMYA5, GIMA8, CYFP1, SPAG5, HNRPQ, RPF1, MBB1A, PRC2A, ADCY2, MOGS, SDA1, FA98B, WIPI2, TRRAP, XYLT1, WDR82, GNS, ERLN2, S38A9, WASF2, CMC1, NIM1, TBL1R, ZN526, CARF, HES7, UNC80, RBGPR, ECHA, ELMO1, F214B, KMT2C, FLNA, TPC2, RBBP5, POGZ, DOC10, SYFA, SMKZ, COR2A, RBM14, DOCK2, CASP9, RAE1L, NUP88, RPB2, UACA, SYEP, P66A, VPS50, COPA, VWF, TXTP, ZN536, LMBD1, R4RL1, C2D1A, URP2, STX5, GT251, SDHA, PO121, ABLM1, COL12, ALAT1, RORB, PDLI2, ERO1B, CD177, PSPC1, NUP58, STAB2, LRC8C, COX18, MAVS, PLBL1, UN93B, EVI2B, MYH9, ESIP1, VIGLN, PSMD2, HNRL1, CCAR2, SP7, RECQ5, SFXN3, IF4A3, RINI, DDX1, UBAP2, S15A4, DNJC9, MASP2, UXS1, CSCL1, BMP2K, CYRIB, SYDC, C1TC, GLYR1, PDIA6, CIC, S12A6, ATAD3, MYO5A, MCLN1, ABEC3, STML2, SFXN1, PRP19, TARA, MCRS1, RTCB, NDUS5, S12A9, SF3B1, ANR17, NU155, TR34A, BAP1, PRP8, NUDC2, TSN31, RN138, RTRAF, RU2B, YETS4, M2OM, MIC19, SNX2, DDX28, CXXC1, RUSD4, ILF2, CHTOP, LUC7L, DIM1, MCES, SEC13, SP2, NOP56, U2AF1, EF1G, MCEM1, EVPL, PRP4, CMTR1, WWP2, DHB11, PESC, TLR9, IRX6, KRT81, RBP2, AFF4, KAT2B, STK3, NUP50, DDX21, ACINU, SIGIR, ZN207, SLAF1, SON, H2AY, MTA2, SAE1, MYO1C, RUVB2, TRPV2, PFKAP, ARC1B, ASAH1, VAPA, EHD1, IF2G, CLIC1, HNRPC, HNRPF
Species: Mus musculus
Download
Cox EJ, Marsh SA. Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovascular diabetology 2013 12 23835259
Abstract:
Exercise causes physiological cardiac hypertrophy and benefits the diabetic heart. Mammalian switch-independent 3A (mSin3A) and histone deacetylases (HDACs) 1 and 2 regulate hypertrophic genes through associations with the DNA binding proteins repressor element-1 silencing transcription factor (REST) and O-linked β-N-acetylglucosamine transferase (OGT). O-linked β-N-acetylglucosamine (O-GlcNAc) is a glucose derivative that is chronically elevated in diabetic hearts, and a previous study showed that exercise reduces cardiac O-GlcNAc. We hypothesized that O-GlcNAc and OGT would physically associate with mSin3A/HDAC1/2 in the heart, and that this interaction would be altered by diabetes and exercise.
O-GlcNAc proteins:
SIN3A
Species: Mus musculus
Download
Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG 2nd, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proceedings of the National Academy of Sciences of the United States of America 2012 109(19) 22517741
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.
O-GlcNAc proteins:
ZEP3, CAMP1, FRPD1, SKT, DLGP4, DPYL2, STXB1, MAP2, NUMBL, M3K5, NOTC2, CTND2, CSK22, ACK1, SYUA, ATX2, ZFR, BSN, GCR, EGR1, NFL, NFM, RC3H2, MAMD1, ATX1L, DERPC, NCAM1, MAP1B, G3P, ATF2, MAP4, KCC2B, AIMP1, FOXK1, STAT3, AINX, NEDD4, RP3A, DVL1, GOGA3, FOXP1, TB182, GMEB2, PI5PA, MRTFB, DOCK4, ABI2, KCNJ3, NCOA1, RGRF2, TNIK, WNK1, G3BP2, MPRIP, XRN1, RLA2, S30BP, NFIA, MARK3, ENAH, PGBM, CDK12, MA6D1, PHAR1, PSD3, NELL1, PRC2C, YETS2, FOXK2, WNK2, LIMC1, TNR6C, AGAP2, ZEP2, AAK1, TNR6A, CAMKV, PKHA7, GRIN1, FCHO2, GARL3, STOX2, UBN1, ABL2, CDV3, PHAR4, TAB3, NUFP2, UNKL, OSBP2, RBM27, CYFP2, TM1L2, ANR40, NACAD, SIN3A, NCOR1, LAMA5, NCOA2, AP180, RAI1, M3K7, TAF6, SRBS1, SH3G1, TLE4, MINT, ZYX, SF01, SYN2, TBR1, SBNO1, CRTC1, GIT1, SLAI1, PKP4, CDK13, RHG23, SH3R1, JHD2C, HECD1, ABLM3, ARMX2, LAR4B, RHG21, FBX41, RPRD2, WWC2, ZN532, BCR, DLGP3, NYAP1, GMIP, NFRKB, MAGI1, CNOT1, NU188, PICAL, SMAP2, SPAG7, PRC2B, ATX2L, MAP6, MCAF1, PHF24, NAV3, AUXI, RERE, RIMB2, PUM1, NU214, KCMF1, EPN1, AGFG2, UBP2L, C2C2L, CNKR2, ZN598, SHAN2, MAST4, RHG32, MYPT2, TB10B, FRM4A, SP130, DLGP2, ZNT6, ABLM2, EMSY, CLAP2, CNOT4, PAMR1, CREST, IFFO1, OSBL6, YTHD3, TM266, SI1L1, SH3R3, RBM14, CNOT2, ANK2, DIDO1, SYNPO, VCIP1, TAB1, SCYL2, ASPP2, F193A, OGT1, NAV1, SYNJ1, RPGF2, EP400, P66A, PDLI5, SCAM1, HS12A, AGFG1, I2BPL, PO121, ABLM1, SPART, RFIP5, CS047, SIR2, AMOT, CCG8, ZCH14, WDR13, UBAP2, NCOA5, FRS3, ZFN2B, BASP1, DCP1A, SRGP2, SRGP1, SYUB, CLIP1, UBXN1, GORS2, EPN4, RB6I2, ANR17, RTN4, TXD12, NECP1, DLGP1, FIP1, F135B, TM263, PLIN3, MYPT1, CRIP2, TSC1, NBEA, RIMS2, ZN704, RBP2, RTN3, 4ET, ELF2, NUDT3, FMN2, NCOA6, SRCN1, ASAP1, RAD1, SON, PLEC, ULK2, ADDA, PCLO, HIPK2, SH2D3, YLPM1, RHG07, TEN1, NCOR2, COR1B, TNIP1, DEMA, E41L3, SYUG, APCL, MECP2, E41L1
Species: Mus musculus
Download
Hahne H, Kuster B. Discovery of O-GlcNAc-6-phosphate modified proteins in large-scale phosphoproteomics data. Molecular & cellular proteomics : MCP 2012 11(10) 22826440
Abstract:
Phosphorylated O-GlcNAc is a novel post-translational modification that has so far only been found on the neuronal protein AP180 from the rat (Graham et al., J. Proteome Res. 2011, 10, 2725-2733). Upon collision induced dissociation, the modification generates a highly mass deficient fragment ion (m/z 284.0530) that can be used as a reporter for the identification of phosphorylated O-GlcNAc. Using a publically available mouse brain phosphoproteome data set, we employed our recently developed Oscore software to re-evaluate high resolution/high accuracy tandem mass spectra and discovered the modification on 23 peptides corresponding to 11 mouse proteins. The systematic analysis of 220 candidate phosphoGlcNAc tandem mass spectra as well as a synthetic standard enabled the dissection of the major phosphoGlcNAc fragmentation pathways, suggesting that the modification is O-GlcNAc-6-phosphate. We find that the classical O-GlcNAc modification often exists on the same peptides indicating that O-GlcNAc-6-phosphate may biosynthetically arise in two steps involving the O-GlcNAc transferase and a currently unknown kinase. Many of the identified proteins are involved in synaptic transmission and for Ca(2+)/calmodulin kinase IV, the O-GlcNAc-6-phosphate modification was found in the vicinity of two autophosphorylation sites required for full activation of the kinase suggesting a potential regulatory role for O-GlcNAc-6-phosphate. By re-analyzing mass spectrometric data from human embryonic and induced pluripotent stem cells, our study also identified Zinc finger protein 462 (ZNF462) as the first human O-GlcNAc-6-phosphate modified protein. Collectively, the data suggests that O-GlcNAc-6-phosphate is a general post-translation modification of mammalian proteins with a variety of possible cellular functions.
Download
Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 2011 108(23) 21606357
Abstract:
The monosaccharide addition of an N-acetylglucosamine to serine and threonine residues of nuclear and cytosolic proteins (O-GlcNAc) is a posttranslational modification emerging as a general regulator of many cellular processes, including signal transduction, cell division, and transcription. The sole mouse O-GlcNAc transferase (OGT) is essential for embryonic development. To understand the role of OGT in mouse development better, we mapped sites of O-GlcNAcylation of nuclear proteins in mouse embryonic stem cells (ESCs). Here, we unambiguously identify over 60 nuclear proteins as O-GlcNAcylated, several of which are crucial for mouse ESC cell maintenance. Furthermore, we extend the connection between OGT and Polycomb group genes from flies to mammals, showing Polycomb repressive complex 2 is necessary to maintain normal levels of OGT and for the correct cellular distribution of O-GlcNAc. Together, these results provide insight into how OGT may regulate transcription in early development, possibly by modifying proteins important to maintain the ESC transcriptional repertoire.