REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (7 results)


Zhu WZ, Palazzo T, Zhou M, Ledee D, Olson HM, Paša-Tolić L, Olson AK. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PloS one 2022 17(10) 36288343
Abstract:
Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.
O-GlcNAc proteins:
MA7D1, CAVN4, OTUD4, FIBA, TRDN, DPYL2, CLCA, MYH11, KNG1, PRDX6, AKAP1, DLDH, NDUBB, GSTO1, CASQ2, RL21, PHB2, ECH1, NDUA1, TIM44, CAVN1, AKAP2, SLK, NIPS2, AT2A2, PGAM2, EF1B, ATX2, NMT1, XIRP1, PDLI1, MYPC3, SNX3, DC1I2, PLIN4, ROA2, RAD, CLPP, TOM1, COX1, COX2, CAH2, CO3, IGJ, KV2A7, IGKC, GCAB, IGHG1, IGH1M, B2MG, HBA, HBB1, LAMC1, FABP4, CFAB, MYG, ALDOA, ANF, AATC, AATM, TBA1B, LDHA, G6PI, TRY2, TTHY, KCRM, ANXA2, ALBU, SPA3K, ENPL, APOE, MDHM, ITB1, PDIA1, NUCL, PGK1, FRIH, MYL3, SODM, NDUB1, ANXA1, EF1A1, CATB, TAU, THIO, GSTM1, H2B1F, H10, CO1A1, FABPH, HS90B, DMD, PFKAL, COX5A, RL7A, GELS, MYH3, AT1B1, GLUT4, RL7, MDHC, RSSA, CALR, HSPB1, ANXA6, GLNA, B4GT1, GSTM2, H12, LDHB, SPTN1, G3P, ENOA, HXK1, PPIA, TPIS, BASI, COF1, RL13A, SERPH, COX5B, COX41, BIP, PRDX3, VIME, CYTC, ENOB, TGM2, EIF3A, CBX3, CXA1, PIMT, CRYAB, CATA, CAPG, GSTA4, RS2, TLN1, MOES, RADI, CTNA1, DHE3, FKB1A, MAP4, RL3, H2AX, PDIA3, PABP1, FRIL1, FETUA, DESM, AIMP1, LA, ANT3, RANG, MIF, PTN11, HSPB7, ODPA, CALX, PRDX1, RL12, RL18, FBLN2, HMGCL, GRP75, CAP1, TKT, RL28, ACSL1, ECI1, H14, H11, H15, H13, ALDR, COF2, ACADM, PRS7, ADX, ALDH2, CAPZB, RL6, RL29, CACP, RL13, ANXA5, TBCA, LMNA, CX7A2, TNNI3, ADT1, ROA1, PCY1A, CAV1, ODBA, CSRP3, ACADV, PA2G4, TNNT2, ICAL, ACADL, CAV3, MLRV, ADT2, LUM, KPYM, NDUS6, CPT2, RL10A, ODB2, CCHL, MOT1, IDHP, STOM, ADK, ATPK, ACYP2, ATP68, ATP5E, AT5G2, CX6B1, CX7A1, COX7B, CYB5, UBP5, ATPB, WFS1, ACTN4, EF2, OPA1, TPM1, B2L13, PCBP1, ACTB, RS20, PPLA, UB2D3, UBC12, UBE2N, RL26, RL27, SUMO2, 1433G, RS7, RS8, 1433E, RS14, RS18, RS11, RS13, DLRB1, EF1A2, RS4X, RL23A, RS6, H4, RAN, RS15, RS25, RS30, RL30, CYC, RL31, RS3, RL32, RL8, FBX40, YBOX1, RS27A, HSP7C, MPC1, CH60, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, ACTH, RS12, RS10, RL22, ACTC, UB2L3, TBA4A, TBB4B, H31, IMB1, PEBP1, HINT1, IDHG1, NACAM, TCPD, SGCD, SGCA, WNK1, RL19, SRSF3, H32, RS3A, G3BP2, ANXA4, COQ7, G3BP1, LAMA4, QCR6, PRDX5, APOA1, CO1A2, NDKB, TERA, UBA1, MYH6, ATPA, KCRB, CO6A1, PGBM, EMAL1, ATP5I, CLUS, ANXA7, ACADS, CD36, NEBL, PERM1, TRI72, HSDL2, HP1B3, PRC2C, TM38A, Q3TV00, SRSF6, FUBP2, SDHF1, EI3JA, LIMC1, AAK1, NDUB6, MCCB, COBL1, SLMAP, SRBS2, K22O, CPZIP, NDUF2, MYPN, HSPB6, MLIP, IASPP, TM1L2, ODO1, LAMA2, STIP1, REEP5, VDAC2, VDAC1, COQ8A, LAP2B, PRDX2, HCFC1, LAMB2, HSP74, HCDH, FBN1, FXR1, KTN1, GDIB, DDX5, KINH, LASP1, PZP, NPM, NNTM, SNRPA, SPTB2, SPEG, SRBS1, DBNL, NDUA4, FKBP3, IF4G2, ZYX, CAVN2, SPRE, SF01, CD34, CH10, H2A2B, H2A2C, NQO1, VINC, EI3JB, CLH1, H2A2A, GPSM1, IF4G1, KCRS, LPPRC, AT1A2, CAND2, RS9, CMYA5, FHOD3, ATPMK, MIC27, MSRB2, NP1L4, MTCH1, MTCH2, PICAL, NDUAC, HNRPQ, HUWE1, LC7L2, MIC10, NEXN, SRCA, LNP, CLAP1, SRA1, UBP2L, NRAP, BDH, GLRX5, ATPF1, EFTU, H2A3, LPP, MYPT2, IF4B, ECHM, RCN3, SYIM, EIF2A, ODPX, EEA1, ODP2, ECHA, COQ3, RL24, FLNA, TIDC1, PLIN5, SYP2L, SSDH, THIM, MIC60, PABP2, BOLA3, SYEP, LONM, H2A1F, H2A1H, H2A1K, SEPT8, PGP, AL4A1, SLAI2, PDLI5, PYGB, PAK2, AFG32, EIF3B, FIBB, COXM2, COQ9, SDHA, SIR5, ACD10, NDUS8, NNRE, HIBCH, THIL, MARE2, QCR9, H2AJ, DC1L1, SPART, NAR3, MIC13, CLYBL, PP14C, TXLNB, MAVS, MYH9, VIGLN, PSMD2, AT1A1, LMCD1, HNRPU, S25A3, FLNC, SFPQ, NDUS1, MIC25, ATPG, SH3L3, UBAP2, NDUS2, EIF3H, CISD1, HEMO, EGLN1, L2HDH, RPN1, NDUV1, GRHPR, MYH7, PCCA, UGPA, ETFD, THIKA, TRFE, TOIP1, MACD1, CLIP1, K2C5, UBXN1, ALPK3, RT02, CPT1B, TALDO, ROAA, THTM, STML2, PACN3, ECHB, PLST, ACON, DCTN2, NAMPT, PPIF, NDUAA, ETFA, GRPE1, PARK7, NDUS5, DNJA3, PCCB, MCCA, PPR3A, EH1L1, ACS2L, RRBP1, GDIR1, NDUA5, COX6C, TOM22, ATP5L, NDUB2, COXM1, RM24, NDUC2, DECR, QCR8, NDUA2, FIS1, SDHB, NDUB4, NDUB5, NDUB9, AT5F1, RS21, ACO13, 1433B, CYB5B, KGD4, NDUA6, NDUB3, PSMD9, RL14, NDUB7, M2OM, UCRI, MIC19, OCAD1, PIN4, NDUS4, RT28, SERB1, SPCS2, SSBP, QCR1, NSF1C, C560, CISY, TOM70, RS19, ODPB, HNRPM, PGM1, SCOT1, CY1, HINT2, GAL3A, MCEE, CHCH2, ERP44, NOL3, MMAB, ODO2, COA3, RT33, ATPD, NDUB8, NDUV2, IDH3A, F162A, ARMC1, RL37, QCR7, RL4, EF1G, EFHD2, PRS37, ATPO, QCR2, PGAM1, MYPT1, LNEBL, TELO2, NDUA9, NDUS7, NDUA8, NDUBA, NDUS3, CRIP2, ETFB, ATP5H, MIC26, MMSA, EHD4, NDUAD, POPD1, HRG, PALLD, JPH2, IVD, NHRF2, PALMD, ACTN2, AK1A1, DBLOH, MYOZ2, PDK2, HSPB8, HIG1A, BAG3, AUHM, MACF1, VAPB, NDRG2, ACOT2, QKI, PRS30, UBQL2, H2AY, GLYG, ACOX1, DEST, KAD1, PSA1, KAD2, KAD3, CAD13, PYGM, IF4H, COR1B, SUCA, ECI2, SH3BG, TAGL2, PACN2, EHD1, AIFM1, NDUA7, BAG6, USO1, PLM, LETM1, SUCB2, SUCB1, K2C6B
Species: Mus musculus
Download
Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Frontiers in aging 2021 2 35822049
Abstract:
O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that ar