REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (7 results)


Zhu WZ, Palazzo T, Zhou M, Ledee D, Olson HM, Paša-Tolić L, Olson AK. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PloS one 2022 17(10) 36288343
Abstract:
Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.
O-GlcNAc proteins:
MA7D1, CAVN4, OTUD4, FIBA, TRDN, DPYL2, CLCA, MYH11, KNG1, PRDX6, AKAP1, DLDH, NDUBB, GSTO1, CASQ2, RL21, PHB2, ECH1, NDUA1, TIM44, CAVN1, AKAP2, SLK, NIPS2, AT2A2, PGAM2, EF1B, ATX2, NMT1, XIRP1, PDLI1, MYPC3, SNX3, DC1I2, PLIN4, ROA2, RAD, CLPP, TOM1, COX1, COX2, CAH2, CO3, IGJ, KV2A7, IGKC, GCAB, IGHG1, IGH1M, B2MG, HBA, HBB1, LAMC1, FABP4, CFAB, MYG, ALDOA, ANF, AATC, AATM, TBA1B, LDHA, G6PI, TRY2, TTHY, KCRM, ANXA2, ALBU, SPA3K, ENPL, APOE, MDHM, ITB1, PDIA1, NUCL, PGK1, FRIH, MYL3, SODM, NDUB1, ANXA1, EF1A1, CATB, TAU, THIO, GSTM1, H2B1F, H10, CO1A1, FABPH, HS90B, DMD, PFKAL, COX5A, RL7A, GELS, MYH3, AT1B1, GLUT4, RL7, MDHC, RSSA, CALR, HSPB1, ANXA6, GLNA, B4GT1, GSTM2, H12, LDHB, SPTN1, G3P, ENOA, HXK1, PPIA, TPIS, BASI, COF1, RL13A, SERPH, COX5B, COX41, BIP, PRDX3, VIME, CYTC, ENOB, TGM2, EIF3A, CBX3, CXA1, PIMT, CRYAB, CATA, CAPG, GSTA4, RS2, TLN1, MOES, RADI, CTNA1, DHE3, FKB1A, MAP4, RL3, H2AX, PDIA3, PABP1, FRIL1, FETUA, DESM, AIMP1, LA, ANT3, RANG, MIF, PTN11, HSPB7, ODPA, CALX, PRDX1, RL12, RL18, FBLN2, HMGCL, GRP75, CAP1, TKT, RL28, ACSL1, ECI1, H14, H11, H15, H13, ALDR, COF2, ACADM, PRS7, ADX, ALDH2, CAPZB, RL6, RL29, CACP, RL13, ANXA5, TBCA, LMNA, CX7A2, TNNI3, ADT1, ROA1, PCY1A, CAV1, ODBA, CSRP3, ACADV, PA2G4, TNNT2, ICAL, ACADL, CAV3, MLRV, ADT2, LUM, KPYM, NDUS6, CPT2, RL10A, ODB2, CCHL, MOT1, IDHP, STOM, ADK, ATPK, ACYP2, ATP68, ATP5E, AT5G2, CX6B1, CX7A1, COX7B, CYB5, UBP5, ATPB, WFS1, ACTN4, EF2, OPA1, TPM1, B2L13, PCBP1, ACTB, RS20, PPLA, UB2D3, UBC12, UBE2N, RL26, RL27, SUMO2, 1433G, RS7, RS8, 1433E, RS14, RS18, RS11, RS13, DLRB1, EF1A2, RS4X, RL23A, RS6, H4, RAN, RS15, RS25, RS30, RL30, CYC, RL31, RS3, RL32, RL8, FBX40, YBOX1, RS27A, HSP7C, MPC1, CH60, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, ACTH, RS12, RS10, RL22, ACTC, UB2L3, TBA4A, TBB4B, H31, IMB1, PEBP1, HINT1, IDHG1, NACAM, TCPD, SGCD, SGCA, WNK1, RL19, SRSF3, H32, RS3A, G3BP2, ANXA4, COQ7, G3BP1, LAMA4, QCR6, PRDX5, APOA1, CO1A2, NDKB, TERA, UBA1, MYH6, ATPA, KCRB, CO6A1, PGBM, EMAL1, ATP5I, CLUS, ANXA7, ACADS, CD36, NEBL, PERM1, TRI72, HSDL2, HP1B3, PRC2C, TM38A, Q3TV00, SRSF6, FUBP2, SDHF1, EI3JA, LIMC1, AAK1, NDUB6, MCCB, COBL1, SLMAP, SRBS2, K22O, CPZIP, NDUF2, MYPN, HSPB6, MLIP, IASPP, TM1L2, ODO1, LAMA2, STIP1, REEP5, VDAC2, VDAC1, COQ8A, LAP2B, PRDX2, HCFC1, LAMB2, HSP74, HCDH, FBN1, FXR1, KTN1, GDIB, DDX5, KINH, LASP1, PZP, NPM, NNTM, SNRPA, SPTB2, SPEG, SRBS1, DBNL, NDUA4, FKBP3, IF4G2, ZYX, CAVN2, SPRE, SF01, CD34, CH10, H2A2B, H2A2C, NQO1, VINC, EI3JB, CLH1, H2A2A, GPSM1, IF4G1, KCRS, LPPRC, AT1A2, CAND2, RS9, CMYA5, FHOD3, ATPMK, MIC27, MSRB2, NP1L4, MTCH1, MTCH2, PICAL, NDUAC, HNRPQ, HUWE1, LC7L2, MIC10, NEXN, SRCA, LNP, CLAP1, SRA1, UBP2L, NRAP, BDH, GLRX5, ATPF1, EFTU, H2A3, LPP, MYPT2, IF4B, ECHM, RCN3, SYIM, EIF2A, ODPX, EEA1, ODP2, ECHA, COQ3, RL24, FLNA, TIDC1, PLIN5, SYP2L, SSDH, THIM, MIC60, PABP2, BOLA3, SYEP, LONM, H2A1F, H2A1H, H2A1K, SEPT8, PGP, AL4A1, SLAI2, PDLI5, PYGB, PAK2, AFG32, EIF3B, FIBB, COXM2, COQ9, SDHA, SIR5, ACD10, NDUS8, NNRE, HIBCH, THIL, MARE2, QCR9, H2AJ, DC1L1, SPART, NAR3, MIC13, CLYBL, PP14C, TXLNB, MAVS, MYH9, VIGLN, PSMD2, AT1A1, LMCD1, HNRPU, S25A3, FLNC, SFPQ, NDUS1, MIC25, ATPG, SH3L3, UBAP2, NDUS2, EIF3H, CISD1, HEMO, EGLN1, L2HDH, RPN1, NDUV1, GRHPR, MYH7, PCCA, UGPA, ETFD, THIKA, TRFE, TOIP1, MACD1, CLIP1, K2C5, UBXN1, ALPK3, RT02, CPT1B, TALDO, ROAA, THTM, STML2, PACN3, ECHB, PLST, ACON, DCTN2, NAMPT, PPIF, NDUAA, ETFA, GRPE1, PARK7, NDUS5, DNJA3, PCCB, MCCA, PPR3A, EH1L1, ACS2L, RRBP1, GDIR1, NDUA5, COX6C, TOM22, ATP5L, NDUB2, COXM1, RM24, NDUC2, DECR, QCR8, NDUA2, FIS1, SDHB, NDUB4, NDUB5, NDUB9, AT5F1, RS21, ACO13, 1433B, CYB5B, KGD4, NDUA6, NDUB3, PSMD9, RL14, NDUB7, M2OM, UCRI, MIC19, OCAD1, PIN4, NDUS4, RT28, SERB1, SPCS2, SSBP, QCR1, NSF1C, C560, CISY, TOM70, RS19, ODPB, HNRPM, PGM1, SCOT1, CY1, HINT2, GAL3A, MCEE, CHCH2, ERP44, NOL3, MMAB, ODO2, COA3, RT33, ATPD, NDUB8, NDUV2, IDH3A, F162A, ARMC1, RL37, QCR7, RL4, EF1G, EFHD2, PRS37, ATPO, QCR2, PGAM1, MYPT1, LNEBL, TELO2, NDUA9, NDUS7, NDUA8, NDUBA, NDUS3, CRIP2, ETFB, ATP5H, MIC26, MMSA, EHD4, NDUAD, POPD1, HRG, PALLD, JPH2, IVD, NHRF2, PALMD, ACTN2, AK1A1, DBLOH, MYOZ2, PDK2, HSPB8, HIG1A, BAG3, AUHM, MACF1, VAPB, NDRG2, ACOT2, QKI, PRS30, UBQL2, H2AY, GLYG, ACOX1, DEST, KAD1, PSA1, KAD2, KAD3, CAD13, PYGM, IF4H, COR1B, SUCA, ECI2, SH3BG, TAGL2, PACN2, EHD1, AIFM1, NDUA7, BAG6, USO1, PLM, LETM1, SUCB2, SUCB1, K2C6B
Species: Mus musculus
Download
Huynh VN, Wang S, Ouyang X, Wani WY, Johnson MS, Chacko BK, Jegga AG, Qian WJ, Chatham JC, Darley-Usmar VM, Zhang J. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Frontiers in aging 2021 2 35822049
Abstract:
O-linked conjugation of ß-N-acetyl-glucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification process that senses nutrient availability and cellular stress and regulates diverse biological processes that are involved in neurodegenerative diseases and provide potential targets for therapeutics development. However, very little is known of the networks involved in the brain that are responsive to changes in the O-GlcNAc proteome. Pharmacological increase of protein O-GlcNAcylation by Thiamet G (TG) has been shown to decrease tau phosphorylation and neurotoxicity, and proposed as a therapy in Alzheimer's disease (AD). However, acute TG exposure impairs learning and memory, and protein O-GlcNAcylation is increased in the aging rat brain and in Parkinson's disease (PD) brains. To define the cortical O-GlcNAc proteome that responds to TG, we injected young adult mice with either saline or TG and performed mass spectrometry analysis for detection of O-GlcNAcylated peptides. This approach identified 506 unique peptides corresponding to 278 proteins that are O-GlcNAcylated. Of the 506 unique peptides, 85 peptides are elevated by > 1.5 fold in O-GlcNAcylation levels in response to TG. Using pathway analyses, we found TG-dependent enrichment of O-GlcNAcylated synaptic proteins, trafficking, Notch/Wnt signaling, HDAC signaling, and circadian clock proteins. Significant changes in the O-GlcNAcylation of DNAJC6/AUXI, and PICALM, proteins that are risk factors for PD and/or AD respectively, were detected. We compared our study with two key prior O-GlcNAc proteome studies using mouse cerebral tissue and human AD brains. Among those identified to be increased by TG, 15 are also identified to be increased in human AD brains compared to control, including those involved in cytoskeleton, autophagy, chromatin organization and mitochondrial dysfunction. These studies provide insights regarding neurodegenerative diseases therapeutic targets.
O-GlcNAc proteins:
TANC2, AMRA1, CAMP1, SKT, AGRIN, KANL3, TTLL3, NHSL2, CTTB2, CCDC6, SHAN1, SYGP1, DPYL2, STXB1, CLOCK, NOTC2, VIAAT, CTND2, TPD53, REPS1, NLK, ACK1, SYUA, ATX2, PDLI1, ZFR, HCN1, BSN, TOM1, SYN1, GCR, EGR1, NFL, NFM, ATX1L, DERPC, KCC2A, CNTN1, HSPB1, MAP1B, G3P, ATF2, MTAP2, RS2, FOXK1, STAT3, AINX, EPB41, RFX1, LMNA, INPP, VATA, DVL1, CNBP, ATX1, NCAN, GOGA3, PTPA, GCP3, TB182, GMEB2, YTHD1, PI5PA, MRTFB, LIPA3, NACAM, TNIK, WNK1, NPTN, NEO1, S30BP, ZEP1, APOC2, EMAL1, RELCH, PRC2C, YETS2, FUBP2, QRIC1, LIMC1, DAB2P, ZEP2, AAK1, TNR6A, FCHO2, DRC1, SRBS2, GRM5, PACS2, OXR1, PHAR4, LIN54, MLIP, UNKL, SMG7, RBM27, CYFP2, SYNRG, SRC8, SKIL, NCOR1, LAMA5, HCFC1, P3C2A, SAP, APC, TOB1, AP180, FXR1, HS71A, LASP1, MAFK, M3K7, TAF6, ASPP1, SRBS1, DBNL, SH3G1, TLE4, IF4G2, MINT, ZYX, NUP62, OMGP, TFE3, SYN2, TBR1, RBL2, SBNO1, SLAI1, PKP4, SH3R1, JHD2C, ABLM3, ARMX2, LAR4B, HELZ, S23IP, RBM26, BCR, AHDC1, PAPD7, MFF, KMT2D, ERC2, NFRKB, WDFY3, GGYF2, TEX2, CNOT1, IF2A, PICAL, PLPR3, PRC2B, C2CD5, TPPP, ATX2L, MAP6, NAV3, AUXI, RIMB2, AVL9, NU214, AP4E1, UBP2L, C2C2L, IF4G3, ZN598, SHAN2, LPP, MYPT2, PHIPL, TB10B, CCD40, ZC3HE, DLGP2, ZC21A, BAIP2, EMSY, CLAP2, LIPA2, SRRM2, PAMR1, GEPH, YTHD3, POGZ, EPC2, SI1L1, RBM14, HYCC2, ANK2, CDAN1, SYNPO, VCIP1, TAB1, MEF2C, F193A, OGT1, EP400, EPN2, P66A, PDLI5, GTPBA, ZBT20, RTN1, BRD3, AGFG1, ABLM1, MRTFA, DC1L1, SPART, RFIP5, NUP35, WASF1, SC6A8, SGIP1, AGAP3, P66B, TAF9, WDR13, LRP5, UBAP2, BASP1, DCP1A, SYUB, TRFE, TRIM7, CIC, S12A6, GORS2, TAB2, EPN4, RNF34, ANR17, NECP1, FLIP1, ROA0, RBM33, TPD54, ODO2, DLGP1, FIP1, TM263, PLIN3, LNEBL, KC1D, NBEA, INP4A, RIMS2, RBP2, RTN3, NUDT3, ATR, ADRM1, FMN2, NCOA6, SON, ULK2, ADDA, MAGD1, MAP1A, GRM3, PCLO, GAB1, FBX6, NPAS3, GUAD, NCOR2, ATRN, NFAT5, DEMA, E41L3, SLIT3, CARM1, DYR1B, MECP2, E41L1, HDAC6
Species: Mus musculus
Download
Deracinois B, Camoin L, Lambert M, Boyer JB, Dupont E, Bastide B, Cieniewski-Bernard C. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Journal of proteomics 2018 186 30016717
Abstract:
The O-linked-N-acetyl-d-glucosaminylation (O-GlcNAcylation) modulates numerous aspects of cellular processes. Akin to phosphorylation, O-GlcNAcylation is highly dynamic, reversible, and responds rapidly to extracellular demand. Despite the absolute necessity to determine post-translational sites to fully understand the role of O-GlcNAcylation, it remains a high challenge for the major reason that unmodified proteins are in excess comparing to the O-GlcNAcylated ones. Based on a click chemistry approach, O-GlcNAcylated proteins were labelled with azido-GalNAc and coupled to agarose beads. The proteome extracted from C2C12 myotubes was submitted to an intensive fractionation prior to azide-alkyne click chemistry. This combination of fractionation and click chemistry is a powerful methodology to map O-GlcNAc sites; indeed, 342 proteins were identified through the identification of 620 peptides containing one or more O-GlcNAc sites. We localized O-GlcNAc sites on proteins involved in signalling pathways or in protein modification, as well as structural proteins. Considering the recent role of O-GlcNAcylation in the modulation of sarcomere morphometry and interaction between key structural protein, we focused on proteins involved in the cytoarchitecture of skeletal muscle cells. In particular, several O-GlcNAc sites were located into protein-protein interaction domains, suggesting that O-GlcNAcylation could be strongly involved in the organization and reorganization of sarcomere and myofibrils.
Species: Mus musculus
Download
Zaro BW, Batt AR, Chuh KN, Navarro MX, Pratt MR. The Small Molecule 2-Azido-2-deoxy-glucose Is a Metabolic Chemical Reporter of O-GlcNAc Modifications in Mammalian Cells, Revealing an Unexpected Promiscuity of O-GlcNAc Transferase. ACS chemical biology 2017 12(3) 28135057
Abstract:
Glycans can be directly labeled using unnatural monosaccharide analogs, termed metabolic chemical reporters (MCRs). These compounds enable the secondary visualization and identification of glycoproteins by taking advantage of bioorthogonal reactions. Most widely used MCRs have azides or alkynes at the 2-N-acetyl position but are not selective for one class of glycoprotein over others. To address this limitation, we are exploring additional MCRs that have bioorthogonal functionality at other positions. Here, we report the characterization of 2-azido-2-deoxy-glucose (2AzGlc). We find that 2AzGlc selectively labels intracellular O-GlcNAc modifications, which further supports a somewhat unexpected, structural flexibility in this pathway. In contrast to the endogenous modification N-acetyl-glucosamine (GlcNAc), we find that 2AzGlc is not dynamically removed from protein substrates and that treatment with higher concentrations of per-acetylated 2AzGlc is toxic to cells. Finally, we demonstrate that this toxicity is an inherent property of the small-molecule, as removal of the 6-acetyl-group renders the corresponding reporter nontoxic but still results in protein labeling.
O-GlcNAc proteins:
A2A5R8, A2A6U3, A2AF81, A2AG39, A2AIW9, A2AJ72, A2AJI1, A2AKV2, A2AL12, A2AMW0, A2AUR3, LAS1L, TRM1L, A5A4Y9, A6PWC3, B0QZF8, B1AU76, UPP, B7ZC19, B7ZP47, B8JJC1, D3YWF6, D3YWK1, D3YWS3, D3YYP4, E9PX53, E9Q066, I2BP2, E9Q4Q2, E9Q5L7, E9Q7W0, E9QP59, F8WGW3, G3UX26, G3UYZ0, G3UZ44, G3X972, H3BKW0, H7BWX9, GTPB1, AIP, ATOX1, HDAC1, GSH0, DHX15, IKBE, AKAP2, SLK, IMPCT, IF6, ACOT1, NMT1, DHB12, SRPK1, ZN326, KLC1, RPP30, IDHC, CASP8, GCR, TYSY, RIR1, S10AA, LEG1, G3P, TPIS, PRDX3, CBX3, TISD, CATA, IMDH2, NFKB1, MAP4, CEBPB, CDK4, FKBP4, HMGB2, KAP3, MP2K1, RANG, PTN11, FBRL, PTN12, FMR1, HMGCL, DYN1, CAP1, STAT1, STAT3, PURA, ALD2, SIPA1, PURA2, GSHR, FOSL2, FOSL1, GSTM5, PCY1A, VATA, HDGF, UBP10, RHOX5, HMGA2, CCHL, NUB1, FAF1, ZNRD2, TB182, PCBP1, ARL1, PFD3, TCTP, HMGB1, DYL1, UB2L3, HDAC2, ELAV1, 4EBP2, PYRG1, TCPB, SPTC2, PSME2, BOP1, WBP2, XDH, HMMR, E2AK2, CO6A1, FABP5, LARP7, CNN2, PP4R2, RM10, Q3TFP0, GUAA, FUBP2, TRADD, CTU2, Q3U4W8, SNX27, BABA1, EDC4, COBL1, SKAP2, ARH40, CSTOS, LRRF1, ZMAT1, Q45VK5, JIP4, MDC1, Q5SUW3, SRC8, SAMH1, KHDR1, SPB6, CAPR1, PAPS1, TS101, PA1B2, FNTA, IGBP1, FSCN1, FXR1, CBX5, RAI1, MELK, FOXC2, DBNL, CYTB, NDRG1, RALY, GPDM, RAB3I, F120A, NOP58, Q6DFZ1, TPM4, Q6NXL1, Q6NZD2, TNPO3, SMHD1, UGGG1, UBXN7, TXLNA, DC1L2, KI18B, JUPI2, LARP1, CAND2, ACAP2, HNRPQ, SPAG7, ATX2L, MAP6, ELP1, PJA2, PGRC2, KCMF1, Q80VB6, FA98B, WDTC1, CPPED, LPP, PEF1, IF4B, ATG4B, FTO, Q8BH80, PRUN1, AHSA1, RCC2, NCEH1, LSS, FBLN3, PPR18, SRRM2, MSRB3, PPME1, RL1D1, TBCD4, NHLC2, MAP1S, TLK1, CND2, RAE1L, SEP10, ZFP57, UBA6, UBA3, STON1, PPM1F, GNL3, PUR1, HMCS1, Q8K0C7, PDXK, ANGE2, LRC41, SDE2, DNM1L, ANLN, MATR3, CBR3, MEPCE, ERF3A, DC1L1, SPART, TDIF2, HEXI1, SNP47, UBP15, MAVS, UBXN4, ACSF2, MICU1, ZNG1, BACH, ISOC1, IPYR2, CSDE1, PIP30, GCSH, Q91X76, DUS3L, BAG2, KCC1A, TTC1, HNRLL, RIN1, PP6R3, MARC2, DBR1, ATAD3, PSIP1, NXF1, NONO, PLST, RRAGC, VMA5A, TARA, DDAH2, TADA1, GRPE1, ABD12, NU155, OGFR, NPM3, GLOD4, COPRS, DPOE4, MIEN1, TRAP1, VATG1, CHSP1, OCAD1, RANB3, MFR1L, NDUF7, TBC15, PPIL4, MPPB, CYBP, ZCHC8, CD37L, MMS19, ARPIN, HNRPM, NXP20, SPF27, TOE1, Q9D4G5, ATAD1, CF226, IPYR, ORN, CNN3, KAP0, PLIN3, AKAP8, EIF3F, IFG15, LIMA1, NEK7, RTN3, STK3, NUP50, SYSM, HSPB8, BAG3, CUL3, RABX5, CAF1A, DREB, TOM40, DNJC7, NFU1, FBX6, NUBP1, DEST, TEBP, ACOT9, NFKB2, KAD2, SKP1, PDC6I, VAPA, CARM1, RAD9A, IF2G, SAE2, TRIP6, MBD2, HNRPF
Species: Mus musculus
Download
Chuh KN, Batt AR, Zaro BW, Darabedian N, Marotta NP, Brennan CK, Amirhekmat A, Pratt MR. The New Chemical Reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc Modification of the Apoptotic Caspases That Can Block the Cleavage/Activation of Caspase-8. Journal of the American Chemical Society 2017 139(23) 28528544
Abstract:
O-GlcNAc modification (O-GlcNAcylation) is required for survival in mammalian cells. Genetic and biochemical experiments have found that increased modification inhibits apoptosis in tissues and cell culture and that lowering O-GlcNAcylation induces cell death. However, the molecular mechanisms by which O-GlcNAcylation might inhibit apoptosis are still being elucidated. Here, we first synthesize a new metabolic chemical reporter, 6-Alkynyl-6-deoxy-GlcNAc (6AlkGlcNAc), for the identification of O-GlcNAc-modified proteins. Subsequent characterization of 6AlkGlcNAc shows that this probe is selectively incorporated into O-GlcNAcylated proteins over cell-surface glycoproteins. Using this probe, we discover that the apoptotic caspases are O-GlcNAcylated, which we confirmed using other techniques, raising the possibility that the modification affects their biochemistry. We then demonstrate that changes in the global levels of O-GlcNAcylation result in a converse change in the kinetics of caspase-8 activation during apoptosis. Finally, we show that caspase-8 is modified at residues that can block its cleavage/activation. Our results provide the first evidence that the caspases may be directly affected by O-GlcNAcylation as a potential antiapoptotic mechanism.
O-GlcNAc proteins:
A2A4A6, A2A5R8, GPTC8, SPD2B, A2ACG7, A2AFQ9, A2AFW6, A2AG46, CKAP5, A2AH75, A2AJ72, MA7D1, A2AL12, A2AMW0, A2AMY5, TPX2, PPIG, LAS1L, A5A4Y9, A6PWC3, A6PWK7, UBP36, B1AT03, B1AT82, B1AU75, B2RQG2, OTUD4, B7ZCP4, B7ZP47, D3YUW8, D3YWF6, D3YWK1, D3YX62, SAFB1, D3YXM7, D3YZ06, D3YZP6, D3Z069, D3Z158, D3Z3F8, D3Z6W2, E0CYM1, E9PUH7, E9PVM7, E9PWG6, E9PWV3, E9PWW9, E9PY48, E9PYT3, E9PZM7, E9Q066, E9Q2X6, E9Q3G8, E9Q450, E9Q4K7, E9Q4Q2, KIF23, BD1L1, NUMA1, E9Q7M2, E9Q986, E9Q9E1, E9Q9H2, E9QKG3, E9QKG6, E9QKZ2, E9QLA5, E9QP49, E9QP59, E9QPI5, F2Z3X7, F6S5I0, F7AA26, F7BQE4, FARP1, F8VQ93, F8VQC7, F8VQE9, F8VQK5, F8WI30, G3UZ44, G3UZX6, G3X8R0, G3X8Y3, G3X928, G3X963, G3X972, G3X9V0, G5E896, G5E8E1, H3BJU7, H3BK31, H3BKK2, H7BX26, I1E4X0, I7HIK9, J3QNW0, DPYL2, GTPB1, AKAP1, TCOF, AIP, HDAC1, RL21, GSH0, KIF1C, DHX15, SC6A6, IF6, ILK, ATX2, NMT1, E41L2, DHB12, SRPK1, ZN326, ZFR, PARG, SPD2A, SP1, CASP8, HPRT, LDHA, G6PI, TYSY, RIR1, GNAI2, ITB1, 4F2, H2B1F, MAP1B, HMOX1, LEG1, G3P, KS6A3, COF1, GNAO, IFRD1, VIME, UBL4A, CBX3, CXA1, CATA, IMDH2, IL1RA, MCM3, CDK4, NKTR, FKBP4, CBX2, HMGB2, AIMP1, KAP3, MP2K1, SYWC, KIF4, NEDD1, DPOLA, RANG, UBP4, PTN11, RAB18, PTN1, PTN12, LDLR, DNLI1, CAP1, STAT3, STA5B, PURA, ALD2, RAGP1, NEDD4, STT3A, ALDH2, GSHR, GFPT1, PCY1A, MCM4, ICAL, PLCB3, CDN2A, HDGF, UBP10, KPYM, CCHL, IDHP, DDX6, GOGA3, COX17, ACTN4, GCP3, TB182, EIF3E, ABCE1, PFD3, 1433E, RAP1A, RS25, TCTP, DNJA1, HMGB1, IF5A1, RS17, RS12, UB2L3, HXD13, HDAC2, ELAV1, TP53B, CASP3, PYRG1, TCPB, STIM2, SRSF3, CSRP2, SPTC2, BOP1, SMAD4, M4K4, HNRL2, MARK3, LARP7, CNN2, PP4R2, PEPD, CDCA2, Q3TFP0, GUAA, PDE12, Q3TL72, PRC2C, NOL9, FUBP2, TRADD, CTU2, ZN865, Q3U4W8, Q3UG37, NAT9, NOL8, Q3UJQ9, SC31A, NCBP1, LRRF1, DDX17, LRC47, JIP4, EHMT1, CA050, AAPK1, NSRP1, Q5RL57, Q5SQB0, TENS3, PUR4, Q5UE59, SRC8, SAMH1, KHDR1, GRB10, HELLS, SPB6, RIPK1, CAPR1, ASNS, LAP2A, CDC37, TS101, SNTB2, FNTA, BAP31, PLPP1, FSCN1, FXR1, DDX5, ATRX, DDX3Y, DDX3X, TGFI1, DBNL, SH3G1, CYTB, SMAD2, NDRG1, ZYX, SQSTM, TPP2, ZN512, LAR4B, F120A, CNDG2, NOP58, LTV1, Q6NV52, Q6NXL1, Q6NZD2, ANKL2, Q6P5B5, XPO1, KIF15, FHOD1, TXLNA, PTN23, JUPI2, NUDC1, TACC1, UBE2O, LARP1, ACAP2, 2AAA, MTCH2, ZN503, CYFP1, HNRPQ, SPAG7, DEK, ACTN1, ATX2L, CKP2L, ZN516, ERBIN, SEPT9, PGRC2, Q80VB6, UBP2L, PI42B, ZN598, SAFB2, Q80ZX0, DLG1, LPP, PEF1, IF4B, FTO, TIPRL, Q8BH80, MISSL, ERC6L, CARF, PRUN1, NUP93, FBX30, HBAP1, AHSA1, RCC2, IPO5, SYLC, CKAP4, MAP11, PALM2, CPNE3, SENP7, CSN7B, NSD2, DPP9, Q8BWW3, KANK2, PXK, PIGT, ITPK1, NHLC2, MAP1S, GWL, PKHH2, CND2, THOP1, SEP11, SKA3, CA198, SEP10, AROS, UBA6, LIPB1, SMAG1, Q8CCM0, ZN276, NAA30, SNX8, SYEP, OGT1, GNL3, PDLI5, FERM2, AGO2, HMCS1, AMERL, SCNM1, DNM1L, NEK9, ANLN, EDC3, MATR3, CHAP1, MEPCE, ERF3A, CC137, TDIF2, VPS18, RFC3, MCMBP, HEXI1, LUZP1, SNP47, TMX1, MAVS, UBXN4, Q8VCQ8, ACSF2, PARN, VIGLN, PSMD2, NAA40, F1142, ZNG1, PAXI, SFPQ, CPIN1, RAB14, IPYR2, PUS7, CSDE1, PIP30, RABE2, CISD1, Q91X76, DUS3L, KCC1A, TTC1, SRGP2, SNX18, RISC, HNRLL, Q921K2, PP6R3, LRC59, UBXN1, DBR1, KCC2G, Q924B0, WAC, SMC6, PAWR, SIAS, STML2, PSIP1, NXF1, PDXD1, NONO, PLST, RRAGC, VMA5A, MAOM, DCTN2, ZN281, CT2NL, GRPE1, ABD12, NU155, OGFR, NPM3, NOP16, GLOD4, DUT, MTAP, IFM3, CYB5B, PAF15, PSMD9, WIPI3, SKA2, VATG1, CHSP1, LRC40, RANB3, SMC1A, MFR1L, ARHGP, DDX47, TBC15, PPIL4, MPPB, CYBP, TECR, SERB1, ZCHC8, SPCS2, Q9CZP3, CD37L, SSBP3, MMS19, MGRN1, ARPIN, HNRPM, SYRC, MCES, Q9D4G5, ATAD1, F162A, TRIR, IPYR, PHF10, ARFG3, ORN, BOLA1, CNN3, KAP0, PLIN3, AKAP8, XRN2, GNAI3, PUR6, RAI14, SENP3, ARFG1, SIL1, VPS35, DGCR8, SYCC, ELP4, LIMA1, XPO2, RBP2, RTN3, PALLD, TMOD3, STK3, COPB, NUP50, DDX21, SH3L1, DDX20, MBNL1, BAG3, GKAP1, ZN207, TRXR1, PPCE, CAF1A, LIMD1, NDRG3, DNJC7, NFU1, COPG1, NUBP1, SMAP, DEST, ACOT9, PR40A, FOXO1, FIZ1, NFKB2, KAD2, AKA12, PRKRA, PDC6I, CHIP, COR1C, VAPA, NDKM, E41L3, TAGL2, CARM1, MTNB, BCL10, IF2G, P5CS, COG1, MD2L1, EIF3G, SAE2, ILF3, TRIP6, USO1, BAZ1B, HNRPF, KEAP1
Species: Mus musculus
Download
Chuh KN, Zaro BW, Piller F, Piller V, Pratt MR. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. Journal of the American Chemical Society 2014 136(35) 25153642
Abstract:
Metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain bioorthogonal functionalities and enable the direct visualization and identification of glycoproteins from living cells. Each MCR was initially thought to report on specific types of glycosylation. We and others have demonstrated that several MCRs are metabolically transformed and enter multiple glycosylation pathways. Therefore, the development of selective MCRs remains a key unmet goal. We demonstrate here that 6-azido-6-deoxy-N-acetyl-glucosamine (6AzGlcNAc) is a specific MCR for O-GlcNAcylated proteins. Biochemical analysis and comparative proteomics with 6AzGlcNAc, N-azidoacetyl-glucosamine (GlcNAz), and N-azidoacetyl-galactosamine (GalNAz) revealed that 6AzGlcNAc exclusively labels intracellular proteins, while GlcNAz and GalNAz are incorporated into a combination of intracellular and extracellular/lumenal glycoproteins. Notably, 6AzGlcNAc cannot be biosynthetically transformed into the corresponding UDP sugar-donor by the canonical salvage-pathway that requires phosphorylation at the 6-hydroxyl. In vitro experiments showed that 6AzGlcNAc can bypass this roadblock through direct phosphorylation of its 1-hydroxyl by the enzyme phosphoacetylglucosamine mutase (AGM1). Taken together, 6AzGlcNAc enables the specific analysis of O-GlcNAcylated proteins, and these results suggest that specific MCRs for other types of glycosylation can be developed. Additionally, our data demonstrate that cells are equipped with a somewhat unappreciated metabolic flexibility with important implications for the biosynthesis of natural and unnatural carbohydrates.
O-GlcNAc proteins:
A1BN54, A2A4Z1, A2A6U3, A2AFJ1, A2AG83, A2AL12, A2AMW0, A2AMY5, LAS1L, B1AU75, OTUD4, B7FAU9, B7ZP47, D3YUC9, D3YVJ7, SAFB1, D3Z4W3, E9PVC5, E9PZM7, E9Q066, E9Q2X6, E9Q310, E9Q5L7, E9Q7M2, E9Q986, F6T2Z7, G3UZ44, G3UZI2, G3X8Q0, G3X8Y3, G3X928, G3X972, G3X9V0, G5E8E1, H3BKK2, J3JS94, CAN2, DPYL2, AIP, HDAC1, MP2K3, GSH0, DHX15, ZW10, AKAP2, SLK, NMT1, E41L2, SRPK1, PARG, SPD2A, LDHA, ANXA2, RIR1, ANXA1, LMNB1, LEG1, G3P, TPIS, COF1, FAS, CBX3, BCAT1, MCM3, MAP4, FKBP4, HMGB2, AIMP1, MP2K1, SYWC, RANG, UBP4, PTN11, RAB5C, DNLI1, CAP1, STAT3, EPS15, PURA, MSH2, ALD2, PURA2, NEDD4, GFPT1, PCY1A, ICAL, HDGF, UBP10, ACTN4, EF2, TB182, SF3B6, PCBP1, PSME3, PFD3, MTPN, DNJA1, SUMO1, IF5A1, UB2L3, HDAC2, ELAV1, 4EBP2, PYRG1, TCPB, BOP1, DAB2, XDH, UBA1, LARP7, CNN2, PP4R2, PSA, Q3TFP0, GUAA, METK2, FA98A, Q3TT92, UAP1L, NOL9, FUBP2, Q3U4W8, YRDC, NOL8, COBL1, CSTOS, LRRF1, Q3V3Y9, DDX17, MDC1, TENS3, Q5UE59, SRC8, SAMH1, KHDR1, SPB6, CAPR1, PAPS1, ASNS, LAP2B, LAP2A, PPM1G, CDC37, FXR1, PCBP2, KPCI, DDX3X, TSN, DBNL, CYTB, ZYX, RALY, SQSTM, TPP2, PEAK1, NOP58, TPM4, LTV1, ZC11A, Q6P5B5, SMHD1, GGA2, TXLNA, JUPI2, UBE2O, LARP1, 2AAA, MTCH2, DEK, MBB1A, ATX2L, OTUB1, MAP6, AFTIN, FLNB, PI42B, ZN598, SAFB2, GRWD1, CPPED, LPP, PEF1, IF4B, SYAC, RUFY1, PRUN1, CTF18, AHSA1, RCC2, IPO5, CKAP4, PPR18, HEAT3, SRRM2, HAT1, MAP1S, TLK1, CND2, THOP1, SEP11, TBL3, SEP10, UBA6, SYEP, GNL3, PDLI5, HMCS1, PKHO2, NEK9, ANLN, MATR3, CBR3, MEPCE, ERF3A, SPART, TDIF2, MCMBP, UBP15, MAVS, Q8VCQ8, PSMD2, FLNC, CPIN1, ACLY, MK67I, RINI, PUS7, CSDE1, DUS3L, KCC1A, TTC1, TADBP, RIN1, NONO, RRAGC, SERB, UBQL4, OGFR, NPM3, GLOD4, MTAP, CYB5B, PSMD9, CHSP1, OCAD1, RANB3, MFR1L, TBC15, CYBP, ZCHC8, GARS, CD37L, UB2V1, HNRPM, Q9D4G5, NOP56, IPYR, CNN3, KAP0, PLIN3, AKAP8, XRN2, MYPT1, PUR6, WDR4, SENP3, LIMA1, ANM1, NUP50, DDX20, IQGA1, MBNL1, ELOV1, DCLK1, BAG3, PPCE, CAF1A, LIMD1, DREB, TOM40, DEST, FOXO1, NFKB2, PDC6I, COR1C, TAGL2, CARM1, MTNB, GBP2, P5CS, EIF3G, SAE2, USO1, HNRPF, KEAP1
Species: Mus musculus
Download
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Molecular & cellular proteomics : MCP 2012 11(8) 22645316
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
O-GlcNAc proteins:
A0JNY3, A2A653, A2A654, TANC2, ZEP3, MA7D2, CKAP5, CAMP1, LZTS3, A2AJ19, AJM1, MA7D1, A2ALK6, RPGP1, UBR4, A2AP92, SKT, ANR63, A2ATK9, A2AUD5, A2BI30, A6H6J9, A6MDD2, A8DUV1, B1AQX6, B1AR09, GRIK3, B1ATI9, B1AWT3, NHSL2, FRS1L, UBP24, DLGP4, B2RQ57, B2RQ80, PYR1, B2RQL0, B2RQQ5, GNAI1, B2RUE8, OTU7B, B2RWX1, B6ZHC4, B6ZHC5, B7ZCA7, B7ZMP8, B7ZNA4, B7ZNF6, B7ZWM6, B9EHE8, CTTB2, B9EKL9, PTPRZ, D1FNM8, D3YU59, D3YWX2, DGKH, D3YXR8, PGBD5, SHAN1, D3Z0V7, D3Z2J5, D9HP81, E0CYT1, E9PUA3, E9PUC4, DGKD, E9PUR0, E9PV14, E9PV26, KI67, E9PWL1, E9PWM3, E9PY55, E9PZP8, E9Q1M1, E9Q2B2, E9Q3D6, E9Q3G8, E9Q3M9, E9Q4N6, E9Q616, E9Q6T8, E9Q6Y8, NUMA1, E9Q828, E9Q9I2, E9Q9J6, E9QA16, E9QAP7, E9QAR5, SC16A, E9QJU8, E9QMJ1, SYGP1, RFIP2, HXK2, CAN2, SC22B, DPYL2, STXB1, TCOF, DCTN1, GLU2B, EF2K, PRDX4, AIP, NUMBL, GSTO1, GSH0, M3K5, PSMD4, DHX15, NPC1, BMPR2, VIAAT, BCAT2, CTND2, PITM1, CSK22, REPS1, ACK1, SLK, CAC1B, PGRC1, IMPA1, SYUA, AKA7A, STRN, RL35A, AT2A2, PGAM2, ATX2, NMT1, E41L2, GPX4, EMC8, DHB12, HCN4, KDM6A, ZN326, SORL, GRPE2, KLC1, ZFR, O88568, HCN2, HCN1, BSN, TOM1, RPP30, DNJB5, COX1, HA1D, HBA, K2C1, MBP, ALDOA, PGFRB, LDHA, G6PI, ENPP1, NEUM, ANXA2, RIR1, HS90A, EGR1, MDHM, KCC4, NFL, NFM, GNAI2, PDIA1, NUCL, CADH1, RC3H2, LRC4B, IGS11, DERPC, UBB, IFI5B, IFI4, ANXA1, EF1A1, H2B1F, PARP1, HS90B, DMD, KCC2A, TCPA, A4, COX5A, GELS, UMPS, NCAM1, GPDA, MDHC, SRP54, RLA0, GLNA, H12, LEG1, DDX3L, SPTN1, AP2A2, TPIS, KS6A3, COF1, GNAO, NFH, SERPH, VIME, MTAP2, EIF3A, CBX3, IMDH2, MCM3, CTNA1, MAP4, GNA12, GNA13, PDIA3, PSB8, NCKP1, PABP1, FKBP4, HMGB2, AIMP1, LA, ACM4, SYWC, RANG, RAB5C, RAB18, CALX, PRDX1, RL12, PPM1B, DNLI1, CAP1, STAT3, PURA, OPRM, TCPQ, CX6A1, MSH2, H14, H11, ALDR, ALD2, CBP, AINX, NEDD4, RP3A, CAPZB, SRPRB, RL36, SOX2, HS74L, ADT1, ROA1, INPP, PCY1A, MCM4, CSRP3, RAB7A, CDN2A, HDGF, ADT2, IMA1, UBP10, KPYM, RIDA, HMGA2, RL10A, CCHL, SOX1, RAB2A, ATX1, CACB3, HMCS2, GOGA3, ATPK, ATPB, ACTN4, IDI1, ACOT8, PTPA, KCNN2, KCNN3, TB10A, TB182, SF3B6, MRTFB, DOCK4, MYPR, EIF3E, PCBP1, LIPA3, ACTB, IF4A1, SNP25, RAB10, CSN2, RRAS2, PRS8, RS15A, 1433E, RS18, RS11, SMD1, ABI2, EF1A2, ACTA, VATB2, RL23, RS24, GBB1, HSP7C, TCTP, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, RS17, RS12, UB2L3, RACK1, ACTS, TBA4A, TBA1A, TBB4B, PLXA2, DCC, EBP, NFIX, EM55, HNRH2, NCOA1, ELAV1, RGRF2, USP9X, TCPB, TCPE, TCPZ, NUCB2, IRS2, WNK1, RL36A, CSRP1, SEPR, RS3A, DPYL1, MPRIP, CAC1A, ATP5J, BOP1, RS5, WBP2, CXAR, PLPL9, G3BP1, RBBP6, CDS1, TBB5, IL6RB, NMDE2, NMDE3, TOP2A, NOTC1, NDKB, AQP1, UBA1, CTNB1, S30BP, NFIA, NUCB1, MARK3, APLP1, ENAH, ATPA, TF65, YES, MARK2, PGBM, PYC, CAPR2, EMAL1, LARP7, BAX, CNN2, LYAR, CHD8, CNNM1, INF2, TT21B, Q0IJ77, TRIO, VGF, TANC1, CDK12, Q14B66, MA6D1, NSUN2, MCM9, PHAR1, PSD3, Q2Q7P0, FILA2, Q3TAD4, NB5R4, GUAA, METK2, PRC2C, Q3TRG3, PLPL6, K22E, YETS2, Q3TY93, FUBP2, F117B, Q3U882, LBR, TM109, FOXK2, Q3UFK1, Q3UGZ4, TNR6C, DAB2P, ZEP2, AAK1, Q3UHT7, DTX3L, EDC4, PARP3, WASC4, GRIN1, Q3UQ23, SRBS2, THSD4, MRCKA, SPRY3, KSR2, GRM5, TBCD9, LRRF1, ARMX5, STOX2, SHAN3, UBN1, OXR1, DDX17, PHAR4, ANR28, ZN608, Q571B7, PRAG1, TAB3, Q58DZ3, IQEC2, Q5DU62, AAPK1, NUFP2, UNKL, SMG7, RBM27, CYFP2, TM1L2, PSME4, ANR40, Q5SUH6, GGNB2, SYNRG, Q5SVJ0, RPGP2, TBC9B, ACACA, Q5SXC4, Q5XJV5, LMTK3, RN123, ZDHC8, SRC8, MYL6, SKI, SAMH1, IRGM1, CLD11, NPT2A, SPB6, VDAC2, VDAC3, VDAC1, STYX, RBBP4, ASNS, NCOA2, LAP2A, PPM1G, ASTN1, PRDX2, HCFC1, APC, KCNA4, AP180, FXR1, GDIB, GRID2, GRID1, CBX5, SERA, LASP1, NPM, PCBP2, M3K7, SRBS1, DBNL, SH3G1, CYTB, IF4G2, MINT, ZYX, RALY, TFE3, Q640L6, AR13B, HECAM, NPDC1, SYN2, TBR1, ISG15, ABCG1, ATP4A, MRC2, G3PT, PTN13, TPP2, CTNA3, SBNO1, BEGIN, K1549, GIT1, SLAI1, PKP4, PEAK1, CDK13, SH3R1, MYOF, ABLM3, ARMX2, CE170, LAR4B, NOP58, Q6GR78, TPM4, NIPBL, RRP5, FBX41, Q6NVA3, RPRD2, WWC2, ZN532, Q6NXW0, S23IP, SMHD1, NEST, CSKI1, Q6P9N8, MTSS2, AHDC1, PTN23, TRAK1, SRSF1, CHD4, DLGP3, NUP98, NYAP1, KCC2D, AT1A3, AT1A2, NFRKB, RIGI, MAGI1, WDFY3, TACC1, GGYF2, PF21A, KDM3B, CNOT1, LARP1, Q6ZQB7, NU188, Q6ZQJ9, Q6ZQK4, RS9, RL10, IF2A, SC6A5, SEM6D, 2AAA, EEIG1, MTCH2, PICAL, MRO2B, SCN4B, PLPR4, HNRPQ, TBB2A, SMAP2, Q7TNS5, PLPR3, MBB1A, LNP, TPPP, ATX2L, OTUB1, EXOS3, MAP6, ELP1, SI1L2, LRRC7, ERBIN, PHF24, R3HD2, NAV3, AGRL3, Q80TS6, AUXI, MADD, AVL9, PUM1, UBP8, NU214, SEPT9, NAA15, CAMP3, FA98B, TDRKH, EPN1, TMCC2, AGFG2, UBP2L, Q80X68, C2C2L, FLNB, LRRT4, WNK3, PRIC2, CNKR2, ZN598, SHAN2, AGRB3, Q80ZX0, ZFYV1, MAST4, RHG32, ENTP3, LPP, PEF1, ACTBL, TET3, MYPT2, IF4B, SYAC, F168A, TBL1R, TB10B, CSTP1, CARF, TGO1, FRM4A, SYIM, ANS1B, DLGP2, ZNT6, RCC2, ABLM2, LSS, UNC80, NOE2, CF015, EMSY, ODP2, GGA3, SYLC, DMXL2, IMP2L, CLAP2, LIPA2, ASPH, CNOT4, FLNA, F163B, GEPH, CREST, KCC1D, PGES2, KANK2, GEMI5, IFFO1, OSBL6, YTHD3, TM266, POGZ, LACC1, MAP1S, A16L1, SI1L1, PP4R4, MYO9A, THOP1, RBM14, Q8C2R1, CNOT2, Q8C6E9, CC134, ANK2, ELFN1, DIDO1, NHSL1, WDR37, DCTN4, SYNPO, BCAS3, VCIP1, Q8CE98, TAB1, SCYL2, NED4L, SYEP, F193A, GNAL, OGT1, NAV1, SYNJ1, RPGF2, EP400, PHC3, P66A, TBCE, VWF, STAU2, LIN7A, TBC23, ZBT20, RTN1, HS12A, DNM1L, UNC5B, UNC5A, ANLN, AGFG1, MATR3, Q8K314, AHI1, NDUS8, I2BPL, PREP, ABLM1, EIF3L, ERF3A, HNRPL, IQEC1, DOCK7, DC1L1, SPART, BST2, RFIP5, AT2A1, NUP35, LUZP1, MAVS, MYH9, PARN, AT1A1, SIR2, SNRK, ZDHC5, CC50A, AMOT, AGAP3, MARK1, Q8VHM5, FLNC, SFPQ, CPIN1, WDR13, BACH, S12A5, RAB14, ACLY, MIC25, ATPG, DDX1, SH3L3, UBAP2, NCOA5, CSDE1, FRS3, ZFN2B, DLG2, PTBP2, SRGP1, TMLH, DYST, SYUB, ELOV6, ALS2, TADBP, TBB6, CLIP1, LRC59, K2C5, UBXN1, SIR1, SPRE1, PAWR, MED1, MEP50, STML2, UBP11, NONO, RRAGC, VMA5A, MAOM, DCTN2, NEUA, DDAH2, DNJA3, TRXR3, RB6I2, SRRT, DSRAD, Q99NC2, RIMS1, ANR17, NU155, NTRI, RRBP1, ZN318, TRI33, ATP5L, RL17, GLOD4, DUT, SDHB, GLRX3, IFM3, NECP1, OCAD1, RRP44, TBB2B, DDAH1, YIF1B, ROA0, NIP7, MPPB, CYBP, RL11, TECR, CHTOP, SERB1, QCR1, NNRD, GARS, TOM70, RS19, SYRC, CNDP2, TMEDA, ODO2, DLGP1, TBB4A, IDH3A, IPYR, RL37, FIP1, TIM50, EF1G, RM17, GSDMD, DDA1, F135B, TM263, CNN3, PLIN3, PGAM1, XRN2, MYPT1, DJC10, KC1D, GNAI3, PUR6, S38A3, NDUBA, CRIP2, TSC1, RAI14, NBEA, TCF20, SORC2, DPYL5, TBB3, RBP2, ARHG7, RTN3, SPN90, RBCC1, PSMG2, DDX24, CLD12, PALLD, ELF2, TMOD3, NUDT3, COPB, NUP50, DDX21, TULP4, FLII, RPF2, CCG3, TBA8, IQGA1, NECT1, ADRM1, FMN2, PALS1, DCLK1, BAG3, CUL3, MINK1, REEP6, TRXR1, SYGP1, SON, APBB1, DREB, SPY2, MACF1, ULK2, ZBP1, TOM40, ADDA, GOGA5, DNJB1, MAP1A, PCLO, GAB1, RIPK3, NPAS3, SH2D3, NUBP2, ZEB2, SYT7, DEST, TEBP, SRS10, RPGR, PR40A, KHDR3, TPSN, CDYL, KAD2, TEN1, PDC6I, CHIP, IF4H, COR1B, COR1C, TNIP1, GANP, ARC, MPP2, SHAN1, VAPA, GSK3B, DEMA, E41L3, JIP1, GBP2, CAD20, P5CS, LAT1, DYR1B, MD2L1, SAE2, APCL, SYVC, MTMR1, MECP2, E41L1, SUCB1, HDAC6, GRIA4, HOME1, OSB10
Download
Page 1 of 1