REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (3 results)


Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS chemical biology 2022 17(3) 35254053
Abstract:
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
O-GlcNAc proteins:
A0A0B4J203, A0A0C4DFX4, RBM47, E2F8, WDR27, SBNO1, CNOT1, P121B, P121C, H0YAE9, H0YHG0, H7C469, K7ELQ4, M0QZ24, PDLI1, HAX1, TAF4, BCL9, CAC1A, DDX3X, NFIB, PPP6, MA2B1, ARI1A, SOCS7, ABLM1, KMT2D, GBRD, RGRF2, TX1B3, HGS, MYPT1, SYN3, ZN609, TRI66, PDZD2, MAST4, SC16A, SET1A, CASC3, FOXP2, MOT4, P4HA2, ARPC5, CLOCK, MAFG, PER1, KDM6A, TET3, SI1L1, TGFI1, M3K7, MCA3, PRPF3, TPD54, SYNJ1, IF4G3, E41L2, WIPF1, FOXO3, TGM5, RNF13, SPY2, PLRG1, ZN207, AKAP8, CALU, ORC5, MYPT2, GANP, OGA, CCNT1, BUB1B, PLOD3, PLIN3, MOT2, MAFK, PQBP1, BRD4, TBL1X, PP1RB, NBN, MITF, SRGP2, N4BP1, ROCK2, PP6R2, CNOT3, ANR17, FLNB, NCOR1, SF3B1, REM1, CREG1, CRTAP, SYUG, CYTF, TOX4, TOX, SUN1, PCF11, AGFG2, UBE4B, CAC1H, SVIL, SC24A, SC24B, CNOT4, EYA4, ZMYM6, BAG3, LATS1, DDAH2, TXD12, ONEC2, CLPT1, ABL1, CRYAB, LMNA, TFR1, CATA, GBA1, FUCO, ALDOA, GCR, G3P, CPNS1, HSPB1, RLA2, RLA0, ITB1, K1C18, NPM, CATL1, CATB, MCR, BGLR, ITA5, NFIC, VIME, SNRPA, FGR, ATX1L, DERPC, ZN865, GLI2, MYBB, CLUS, PPAL, MPRI, PABP1, TPR, BMP3, SKIL, ENPL, PO2F1, PLAK, ATF2, ZEP1, RS2, TFE2, F261, ITB4, ZNF23, ZNF25, JUNB, ATF7, TPH1, DDX5, EGR1, SON, NELFE, ATF1, ATF6A, CADH2, ICAL, CSRP1, FLNA, RFX1, CBL, SFPQ, COF1, IF4B, GATA2, APC, DDX6, ARNT, MAP4, LYOX, HXD9, MZF1, CLIP1, 5HT1F, HXA11, ZEP2, ELF1, CTNB1, FBN1, ADDA, BASI, NU214, VGFR2, SRP14, NUP62, SYUA, VATA, CUX1, TXLNA, STAT3, LAP2A, EPS15, HELZ, MATR3, SSRA, SSRB, KI67, ATRX, MAP1B, YAP1, UTRN, STT3A, SC6A8, RFX5, SOX2, PRC2A, HSP13, NR2C2, NASP, CDK8, DHE4, YLPM1, NU153, RBP2, TAF6, MRE11, EMD, MXI1, MAP2, TOB1, PPT1, TCPQ, PAPOA, HCFC1, GDS1, AGFG1, CRIP2, NUP98, SMTN, SC24C, HIRA, ATX1, ATN1, AFAD, AF10, AF17, DSRAD, SEC13, NU107, ZN445, CSN2, RL37, WDR5, TIM10, F193A, RBM6, PITX1, IF4G2, PHC1, ADA17, KGD4, RL19, FOXK1, DAB2, RHG04, RBM10, HNRPU, SPTB2, FOXK2, RUNX1, MEF2A, SP2, SP3, PLOD1, KMT2A, TF65, IF4G1, NOTC2, TLE3, TLE4, PTN12, CALD1, MEF2C, P5F1B, GABPA, ZO1, ACK1, EP300, AHNK, FCHO2, HMGX3, SRBP2, FOXO1, ASPH, TROAP, BPTF, FSTL1, NFIA, DPYD, TP53B, FOXC1, ECH1, ROA0, DDX10, TBX2, GPS2, G3BP1, PABP4, ADAM9, PICAL, NAB1, SERC3, RIPK1, IQGA2, STIM1, CUL4B, ASPP2, CAC1S, RUNX2, NFYC, CDK13, TOB2, VEZF1, UBP2L, GIT2, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, TTLL4, RRP1B, NCOA6, GSE1, MEF2D, LASP1, MYPC3, ZN638, NUMA1, SART3, CND1, R3HD1, KIF14, WDR43, PLCL1, PLEC, NOMO1, NONO, RCN1, RYR3, KS6A1, RBMS2, TAF1C, SF01, MED1, JHD2C, TRIP6, T22D1, ELF2, TAB1, HERC1, NCOA1, VAS1, ZFHX3, ZYX, ADRM1, SYPL1, TAF9, DREB, DGKD, CGT, GEN, LY6K, RFX7, QSER1, AAK1, PRSR3, QRIC1, MA7D1, WDR72, TBRG1, TB10B, TPRN, FIL1L, SVEP1, AMOT, EPC2, CRTC2, PAN3, HS904, YIF1B, AG10A, IGS11, ZN628, BCORL, FIGN, K2026, SH319, TGO1, PRC2B, TOIP1, CEP78, P4R3B, HP1B3, CE170, ZN362, FKB15, AKND1, ZEP3, LRIF1, SWT1, RHG21, UBAP2, RBM26, DEP1A, OGRL1, AHDC1, F222A, RPRD2, RN220, ZN318, TASO2, ZMYM4, PAPD7, TENS2, KANK2, ARID2, USF3, RHG17, CYTSA, ANR40, BICRL, JADE1, PKHA7, NIPBL, LIN54, TET2, RINT1, CRCDL, ZNT6, TTC41, RHGBA, NFRKB, RSBNL, KCD18, NCEH1, MDEAS, ZC3HE, LARP1, NHS, CRTC3, SAS6, MCAF1, BCOR, MPRIP, DNMBP, GGYF2, THADA, BNC2, NFXL1, NBEL2, CO039, SRCAP, CBAR2, UBN2, XIRP1, RAPH1, LARP4, HAKAI, ASXL2, SPT6H, KDM3B, ZCCHV, KANL1, RGPD4, POGZ, ZFY16, NUFP2, MAVS, CLAP1, EMSY, I2BP2, SRGP1, RBBP6, SH3R1, HUWE1, YTHD3, NPM2, ILDR1, KAISO, MYPN, LDB1, LYRIC, BCL9L, LUZP1, NRAP, RTTN, PRSR1, DDX42, CEP57, CD20B, CACL1, P66A, HIPK1, KCC1D, RN135, MY18B, AHNK2, FOXP4, NAV3, NAV2, MISP, ARI3B, IPRI, TEX2, MGAP, CC28A, Z3H7A, ANKH1, SUGP1, RPAP2, MILK2, SRRM1, ZZZ3, GAR4, PHAR4, RTKN2, DCP1B, XRN1, PELP1, CKLF8, TENS4, SPART, RPTOR, NUP93, ZN687, DOCK4, RHG24, RUSC2, SYNPO, FNBP4, D2HDH, RP25L, ATPF2, CPSF7, ARFG1, ENAH, SPOT1, SUMF1, KCNH5, SLAI1, TNR6A, PHC3, DRC6, CBPC3, NAV1, VP37A, KMT2C, ZMIZ2, BD1L1, ARI1B, FLCN, NUP35, TOIP2, TNIP2, KNL1, OR2L2, PUM2, CC110, TBC15, STT3B, ZN507, ALMS1, DLG5, KCNV2, BRX1, DOT1L, GEMI5, PARD3, ZN384, SMAP2, IASPP, TM263, ZFN2B, NUDC2, PCNP, TRUB1, LMO7, ATX2L, PALLD, P66B, BBX, ZCH14, GBF1, SMG7, RTF1, NICA, PHF3, MAML1, ZN592, LAR4B, TFG, TAF4B, RREB1, SC65, CBP, SYMPK, DDX17, GPKOW, FUBP2, UBP7, LPP, LSM10, NCLN, MRTFA, FUBP1, TTC17, PBIP1, TTC28, TOM6, PF21A, INT12, REPS1, ESS2, MBD6, ELP4, SGF29, RBM33, ZN503, P121A, TONSL, PDLI5, ERO1A, DOCK6, FUBP3, RSRC1, ZN594, VCIP1, ZN462, LCOR, PDLI2, CLP1L, Z512B, ZFR, EP400, MRFL, H6ST2, TIGD1, NOL4L, DOCK7, RPR1A, RBM14, ADCYA, QKI, LENG8, TRNT1, PP1RA, PHF12, CIC, MED15, ERBIN, HMCN1, LMF1, PIGS, WRIP1, SIN3A, MINT, HTF4, EYA3, POP1, TEAD3, TTC1, CSN8, ATX2, ARI3A, ANM1, PKP2, TEP1, DPH2, WAC, DIDO1, HNRL1, RBM4, SSBP4, PRR14, SSBP3, YTHD1, KPCD2, ZCHC2, TB182, AMRA1, CE295, TANC1, ZC12C, CEP44, STRAB, SP130, BRD8, RGAP1, SMG9, APC1, I2BPL, TMX4, KI13A, WDR13, EPC1, ADNP, ZN106, TM245, FOXP1, PABP3, WNK1, E41L1, ZHX3, BICC1, PEAK1, PPR3E, ZN703, PKHA5, CLSPN, BCDO1, RC3H2, ZFYV1, TAF9B, EMAL4, ZBT20, NCOA5, TANC2, ZN532, NCK5L, TNR6C, CHD8, FBSL, APMAP, DMAP1, UBN1, DCP1A, INCE, ANLN, GEPH, PDLI7, TULP4, HOME2, SLX9, DIAP3, BMP2K, RBM12, STAU2, DDX28, CWC25, CARF, ETAA1, ABI2, HXC10, BCLF1, TAB2, CELR3, CDK12, GRHL1, SACS, ITSN2, BICRA, CNOT2, TMEM9, CAC1I, CAMP3, DAPLE, RCC2, DIP2B, MBD5, CT2NL, F135A, KANL3, RERE, SE1L1, TRM7, YM012, KDM5B, LIMD1, TCF20, SUN2, LIMA1, SEPT9, UBQL2, TRPS1, S30BP, NRBP, BAZ2B, SIX4, HOOK1, CDC23, TASOR, GMEB2, TNIK, PARP4, NUP50, ZHX1, CDV3, MCTS1, KCNH3, LRFN2, MRTFB, ZBT21, PRR12, YETS2, HECD1, ZMYD8, NOTC3, SPAT2, SOX13, G3BP2, MAGD2, MINP1, MACF1, CP131, SCAF8, TRI33, PHF8, LIMC1, TNR6B, SRRM2, SCML2, ZN148, POLH, INVS, ICE1, R3HD2, MAN1, TR150, WBP11, ZN281, STA13, WNK2, HBS1L, ARIP4, MTCL1, DCAF1, RPGF2, IRS2, CRBG1, HYOU1, SAM50, PRC2C, YTHD2, NCOR2, GMEB1, DC1L1, EPN1, NCOA3, ZHX2, S23IP, U3KPZ7, V9GYH0
Species: Homo sapiens
Download
Chen Y, Tang F, Qin H, Yue X, Nie Y, Huang W, Ye M. Endo-M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O-GlcNAcylation Analysis. Angewandte Chemie (International ed. in English) 2022 61(23) 35289036
Abstract:
To selectively enrich O-linked β-N-acetylglucosamine (O-GlcNAc) peptides in their original form from complex samples, we report the first reversible chemoenzymatic labeling approach for proteomic analysis. In this strategy, the O-GlcNAc moieties are ligated with long N-glycans using an Endo-M mutant, which enables the enrichment of the labeled glycopeptides by hydrophilic interaction liquid chromatography (HILIC). The attached glycans on the enriched glycopeptides are removed by wild-type Endo-M/S to restore the O-GlcNAc moiety. Compared with classic chemoenzymatic labeling, this approach enables the tag-free identification, and eliminates the interference of bulky tags in glycopeptide detection. This approach presents a unique avenue for the proteome-wide analysis of protein O-GlcNAcylation to promote its mechanism research.
O-GlcNAc proteins:
TM271, HEAT9, SBNO1, P121B, GGT3, TAF4, AGRIN, MEIS1, RNT2, NFIB, MA2B1, CDKA1, ABLM1, ADA10, KMT2D, MYPT1, ZN609, SC16A, PLXB2, SET1A, VA0E1, TNC18, TLR3, TET3, PRPF3, IF4G3, ZN207, AKAP8, CALU, EXTL3, PCDH7, TRAK2, GANP, TSN3, MAFK, KERA, SRGP2, ANR17, NCOR1, U520, CRTAP, ATRN, CBPD, RMP, TOX4, SC24D, SRBS2, SUN1, ERLN2, PCF11, SCAF4, VAPB, SMC2, SC24B, CNOT4, EGFR, HPT, GLHA, LMNA, NU3M, VTNC, GCR, A1BG, K2C1, HSPB1, RPN1, AT1B1, K1C18, K2C8, ITAV, GDN, TRY1, SAP, MET, NFIC, VIME, K2C7, SNRPA, UCRIL, ATX1L, NT2NC, LYAG, LAMC1, PPAL, LAMP1, MPRI, TPR, SKIL, T2FB, GLU2B, NID1, PO2F1, MCP, ZEP1, CD36, ATF7, EGR1, SON, ATF1, ICAL, CO5A1, ASPG, SFPQ, ITA3, NKG2A, ARNT, TEAD1, 3MG, TKT, UFO, HXA11, HXC9, ZEP2, HNRH1, ELF1, CD68, RFC1, FBN1, NU214, RL4, SCNNA, SRP14, NUP62, TAGL2, CUX1, IL6RB, PBX2, STAT3, NBL1, LAP2A, LAP2B, LIFR, PCP, ECE1, MUC18, MATR3, SSRB, VDAC2, ATRX, NOTC1, UTRN, RFX5, HSP13, CCN3, AGRE5, NR2C2, CDK8, CENPF, YLPM1, RBM25, NU153, RBP2, TAF6, EMD, PPT1, SMCA4, HCFC1, AGFG1, NUP98, PTTG, ATX1, AT1B3, AF17, DSRAD, LAMB2, CAD13, ITA1, NU107, TGFB2, ACTG, CXAR, PITX1, CNTP1, ABCA4, PHC1, ADA17, KGD4, SARNP, FOXK1, DAB2, HNRPU, SPTB2, FOXK2, MEF2A, SP3, PLOD1, KMT2A, UPAR, IF4G1, NOTC2, SRS11, SUH, MFGM, AHNK, TMM62, GALT1, BST2, SIA4C, ASPH, BPTF, NFIA, FOXC1, ADAM9, NFAC2, MAMD1, NAB1, TBB3, PKD2, LAMB3, KLF5, NFYC, CDK13, SCRB2, LRP8, VEZF1, UBP2L, LAGE3, MDC1, RRP1B, MEF2D, ARI5B, NUMA1, PON2, RCN1, TAF1C, SF01, MED1, JHD2C, ELF2, TAB1, ZFHX3, ZYX, ADRM1, LAMA4, TAF9, FOXD1, LAMA3, RFX7, QSER1, SVEP1, SYTL3, EPC2, LUZP6, CRTC2, YIF1B, BCORL, K2026, PRC2B, ZN362, LRIF1, UBAP2, RBM26, VP13D, RPRD2, RN220, ZN318, TASO2, ECM29, ARID2, SE1L3, BICRL, SCAR3, NIPBL, LIN54, FSTL4, TET2, ZNT6, GOLM2, NFRKB, S39A4, ZC3HE, FIP1, CRTC3, PLGT2, SUSD1, MCAF1, BCOR, IGS10, B3GLT, CD109, FRRS1, SRCAP, NBEL1, UBN2, RAPH1, HAKAI, ASXL2, SPT6H, KDM3B, NRK, NUP54, POGZ, MAVS, PK1L3, PLGT3, EMSY, RAI1, YTHD3, LDB1, LYRIC, OSTM1, PRSR1, DDX42, P66A, FOXP4, CTL2, TEX2, MGAP, ANKH1, SUGP1, NUP93, PLD6, FNBP4, ARFG1, PMGT2, GOLM1, PGLT1, TM87A, CA131, PHC3, SP20H, ARI1B, NUP35, OR6C4, VA0E2, PLBL2, PUM2, SPP2B, DLG5, GPX8, PO210, ZN384, LMO7, MUC16, P66B, BBX, SMG7, NICA, TM131, PHF3, TAF4B, GGH, GSLG1, FUBP2, LPP, NCLN, TTC17, FKB10, TOM6, PF21A, RBM33, I17RA, P121A, PDLI5, CREL1, FUBP3, TXD15, LOXL4, VCIP1, CHAP1, Z512B, ZFR, EP400, HUTU, RBM14, KI20B, PHF12, PANX1, CIC, MED15, ERBIN, JMJD8, MINT, TEAD3, SEM3C, WAC, DIDO1, HNRL1, TM109, NUP58, M4A8, YTHD1, ULBP3, AMRA1, TANC1, TWSG1, S22A4, SP130, APC1, I2BPL, WNT5B, VP33B, EPC1, ADNP, ZN106, FOXP1, PTN23, WNK1, SIA7D, ZHX3, PIEZ2, SG196, TM231, PEAK1, DOCK5, CF155, CNO10, MLXIP, SIAE, PKHA5, RC3H2, TAF9B, ZBT20, NCOA5, TANC2, ZN532, CELR2, APMAP, ABCB9, CHSTB, UBN1, NECT3, PDLI7, RBM12, OCAD1, CARF, ETAA1, HXC10, TAB2, CELR1, CDK12, CNOT2, CRIM1, TMEM9, RCC2, CHD7, RBM27, KANL3, MRC2, SUCO, TCF20, SUN2, UBQL2, LCAP, GGT7, TASOR, GMEB2, ZHX1, DSE, WWC3, MRTFB, ZBT21, PRR12, YETS2, NOTC3, KMT2B, PRP19, MINP1, SCAF8, ZC3H4, SRRM2, SCML2, UST, ICE1, ZN281, DAAM1, IRS2, PRC2C, NCOR2, NPTN, GMEB1, POMT1, S4A7, S23IP
Species: Homo sapiens
Download
Shen B, Zhang W, Shi Z, Tian F, Deng Y, Sun C, Wang G, Qin W, Qian X. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Talanta 2017 169 28411811
Abstract:
O-GlcNAcylation is a kind of dynamic O-linked glycosylation of nucleocytoplasmic and mitochondrial proteins. It serves as a major nutrient sensor to regulate numerous biological processes including transcriptional regulation, cell metabolism, cellular signaling, and protein degradation. Dysregulation of cellular O-GlcNAcylated levels contributes to the etiologies of many diseases such as diabetes, neurodegenerative disease and cancer. However, deeper insight into the biological mechanism of O-GlcNAcylation is hampered by its extremely low stoichiometry and the lack of efficient enrichment approaches for large-scale identification by mass spectrometry. Herein, we developed a novel strategy for the global identification of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry analysis. Standard O-GlcNAc peptides can be efficiently enriched even in the presence of 500-fold more abundant non-O-GlcNAc peptides and identified by mass spectrometry with a low nanogram detection sensitivity. This strategy successfully achieved the first large-scale enrichment and characterization of O-GlcNAc proteins and peptides in human urine. A total of 474 O-GlcNAc peptides corresponding to 457 O-GlcNAc proteins were identified by mass spectrometry analysis, which is at least three times more than that obtained by commonly used enrichment methods. A large number of unreported O-GlcNAc proteins related to cell cycle, biological regulation, metabolic and developmental process were found in our data. The above results demonstrated that this novel strategy is highly efficient in the global enrichment and identification of O-GlcNAc peptides. These data provide new insights into the biological function of O-GlcNAcylation in human urine, which is correlated with the physiological states and pathological changes of human body and therefore indicate the potential of this strategy for biomarker discovery from human urine.