REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard M, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International journal of molecular sciences 2021 22(17) 34502162
Abstract:
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
O-GlcNAc proteins:
A0A096MJ01, A0A096MK30, A0A096MKD4, A0A096P6L8, A0A0G2JSH9, A0A0G2JSP8, A0A0G2JSR0, A0A0G2JSU7, A0A0G2JSW3, A0A0G2JTG7, A0A0G2JTP6, A0A0G2JUT0, A0A0G2JV65, A0A0G2JVG3, A0A0G2JVH4, A0A0G2JW41, A0A0G2JW94, A0A0G2JWK2, A0A0G2JWS2, A0A0G2JYK0, A0A0G2JZF0, A0A0G2K0F5, A0A0G2K3K2, A0A0G2K3Z9, A0A0G2K401, A0A0G2K477, A0A0G2K5I9, A0A0G2K5P5, A0A0G2K654, A0A0G2K719, A0A0G2K7F7, A0A0G2K8H0, A0A0G2K9P4, A0A0G2K9Q9, A0A0G2KAK2, A0A0G2KB63, A0A0H2UHM5, A0A0H2UHQ9, A0A0H2UHZ6, A0A0H2UI36, A0A0U1RRV7, ROA2, B0BNG3, CAH1, SCOT1, B2RYW3, C0JPT7, D3ZCV0, D3ZG43, D3ZIC4, D3ZQM0, D3ZUB0, D3ZZ68, D3ZZN3, D4A0T0, D4A5E5, D4A6Q4, SYNP2, D4A7X7, D4A8X8, D4AA63, D4ACC2, F1LM30, F1LM47, F1LMP9, F1LMV6, F1LP05, F1LP30, F1LSC3, F1LX07, F1LZW6, F1M3H8, F1M820, F1M865, F1M944, F1M953, F1MAA7, F1MAF7, G3V6E1, G3V6H0, G3V6H5, G3V6P7, G3V6S0, G3V6T7, G3V6Y6, G3V7C6, G3V7J0, G3V826, G3V885, G3V8B0, G3V8L3, G3V8V3, G3V9A3, G3V9U2, M0R5J4, M0R735, M0R757, M0R7S5, M0R9L0, PRDX6, C1QBP, HSPB2, ACOT2, HCD2, PARK7, MDHC, AATM, HBA, FIBG, GPX1, ROA1, MDHM, LDHA, PDIA1, G3P, GSTP1, ALDOA, EF2, AT1A1, BIP, RPN1, ODP2, MLRV, KCRS, HS71A, ATPB, CLH1, AT2A2, DMD, ALDH2, KPYM, AL1A7, ETFA, A1I3, CAH3, FIBB, ECHM, ACADL, PGAM2, MYL3, PGK1, ACLY, THIL, ACSL1, CPT2, CSK21, NDUV2, AT5F1, NDKB, NB5R3, IGG2A, IGG2B, LAC2, UCRI, SDHB, TNNI3, CRYAB, PPIB, PGAM1, RPN2, CAH2, TCPA, VIME, PEBP1, ATP5H, EZRI, QCR2, HS90B, 1433B, ATPG, CRIP2, RSSA, CAV1, LDHB, HSPB1, COF1, TERA, DPYL2, TPIS, DESM, ODPB, TNNT2, AL1A1, ES1, IDHP, MYPC, PSA6, ARF3, 1433G, 1433E, EF1A2, H4, RAN, RS3, AP2B1, RL40, HSP7C, CH60, PHB, ACTC, 1433T, TBA1A, 1433F, TBB5, NUP54, VDAC2, HS90A, EFTU, PNPH, HSPB6, PTBP1, H2B1, MUG1, ATPO, ANXA2, ADT2, K2C8, PRRC1, NIT2, Q498N4, ACSF2, H2A3, K2C6A, Q4G079, AGFG1, Q4PP99, Q4V8E1, EHD2, Q52KS1, NDUAA, Q5BJZ3, Q5D059, Q5M9H2, Q5RJN0, Q5RJR9, UBA1, Q5XFV4, LPP, Q5XI38, GDIR1, ODO1, TBA4A, Q5XIH3, ECHB, PDLI5, A1M, CPT1B, NDUS2, ECHA, ENPL, NDUS1, Q66HF3, MAVS, AMPL, ETFB, QCR1, K1C42, Q6IFU9, K1C14, K1C15, K1C13, K1C10, K2C75, K2C1, HNRPU, Q6IMZ3, TS101, RAB1A, PLAK, K2C5, DLDH, SYWC, TBA1B, Q6P9Y4, Q6PDV6, CNDP2, ROA3, CACP, DEST, Q7TQ70, CISY, Q91XN6, SDHA, IDH3A, ACON, AIFM1, MYG, TGM2, HCDH, VDAC1, SC31A
Download
Li T, Zhang Z, Kolwicz SC Jr, Abell L, Roe ND, Kim M, Zhou B, Cao Y, Ritterhoff J, Gu H, Raftery D, Sun H, Tian R. Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell metabolism 2017 25(2) 28178567
Abstract:
Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases, but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (knockout [KO]), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of the hexosamine biosynthetic pathway in KO hearts decreased protein O-linked N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH, resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.
O-GlcNAc proteins:
ODP2, DLDH
Download
Ma J, Banerjee P, Whelan SA, Liu T, Wei AC, Ramirez-Correa G, McComb ME, Costello CE, O'Rourke B, Murphy A, Hart GW. Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of proteome research 2016 15(7) 27213235
Abstract:
O-linked β-N-acetylglucosamine (O-GlcNAc), a post-translational modification on serine and threonine residues of many proteins, plays crucial regulatory roles in diverse biological events. As a nutrient sensor, O-GlcNAc modification (O-GlcNAcylation) on nuclear and cytoplasmic proteins underlies the pathology of diabetic complications including cardiomyopathy. However, mitochondrial O-GlcNAcylation, especially in response to chronic hyperglycemia in diabetes, has been poorly explored. We performed a comparative O-GlcNAc profiling of mitochondria from control and streptozotocin (STZ)-induced diabetic rat hearts by using an improved β-elimination/Michael addition with isotopic DTT reagents (BEMAD) followed by tandem mass spectrometric analysis. In total, 86 mitochondrial proteins, involved in diverse pathways, were O-GlcNAcylated. Among them, many proteins have site-specific alterations in O-GlcNAcylation in response to diabetes, which suggests that protein O-GlcNAcylation is a novel layer of regulation mediating adaptive changes in mitochondrial metabolism during the progression of diabetic cardiomyopathy.
Download
Ma J, Liu T, Wei AC, Banerjee P, O'Rourke B, Hart GW. O-GlcNAcomic Profiling Identifies Widespread O-Linked β-N-Acetylglucosamine Modification (O-GlcNAcylation) in Oxidative Phosphorylation System Regulating Cardiac Mitochondrial Function. The Journal of biological chemistry 2015 290(49) 26446791
Abstract:
Dynamic cycling of O-linked β-N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins serves as a nutrient sensor to regulate numerous biological processes. However, mitochondrial protein O-GlcNAcylation and its effects on function are largely unexplored. In this study, we performed a comparative analysis of the proteome and O-GlcNAcome of cardiac mitochondria from rats acutely (12 h) treated without or with thiamet-G (TMG), a potent and specific inhibitor of O-GlcNAcase. We then determined the functional consequences in mitochondria isolated from the two groups. O-GlcNAcomic profiling finds that over 88 mitochondrial proteins are O-GlcNAcylated, with the oxidative phosphorylation system as a major target. Moreover, in comparison with controls, cardiac mitochondria from TMG-treated rats did not exhibit altered protein abundance but showed overall elevated O-GlcNAcylation of many proteins. However, O-GlcNAc was unexpectedly down-regulated at certain sites of specific proteins. Concomitantly, TMG treatment resulted in significantly increased mitochondrial oxygen consumption rates, ATP production rates, and enhanced threshold for permeability transition pore opening by Ca(2+). Our data reveal widespread and dynamic mitochondrial protein O-GlcNAcylation, serving as a regulator to their function.
Download
Page 1 of 1