REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (5 results)


Shu XE, Mao Y, Jia L, Qian SB. Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nature chemical biology 2022 18(2) 34887587
Abstract:
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.
O-GlcNAc proteins:
A0A075B5P4, A0A087WNV1, A0A087WPT1, A0A087WQF8, A0A087WS88, A0A0A0MQM6, A0A0A6YVP0, A0A0A6YY72, A0A0B4J1E2, A0A0G2JFJ6, A0A0G2JFN8, A0A0G2JFY0, A0A0G2JG10, A0A0G2JG59, A0A0G2JG60, A0A0G2JG65, A0A0G2JGL8, A0A0H2UH17, A0A0J9YTU3, A0A0J9YUT8, A0A0J9YUY8, A0A0N4SV00, A0A0N4SV32, A0A0N4SW94, A0A0N5E9G7, A0A0R4J060, A0A0R4J169, A0A0R4J1E3, A0A0R4J1Y4, A0A0R4J260, A1BN54, A1L341, A1L3S7, A2A485, A2A513, A2A5N3, A2A8V8, A2AGK3, LZTS3, A2AM70, A2AMY5, A2APQ6, A2AS44, A2AVJ7, A2AWT6, A2BGG7, KANL3, K1C28, A6X8Z3, A8Y5K6, B0V2N8, B1AU25, TBD2A, THOC2, TPC11, PLXB2, RBM25, B7FAU9, B7ZWM8, B8JK33, B9EHJ3, D3YTT9, D3YUW7, D3YV30, D3YV43, D3YVH4, D3YX49, D3YX64, D3YX85, SAFB1, D3YYT0, D3YZ62, D3YZL1, D3YZT4, D3Z1X3, D3Z2H7, D3Z3E8, D3Z4B0, CCD78, D3Z6N3, CILP2, D6RCG1, E0CY31, E0CYH0, E9PUA5, E9PUJ2, E9PUX0, GCN1, E9PVC6, E9PVG8, KI67, E9PW24, E9PYF4, SET1A, E9PYI8, E9PZW0, E9Q066, E9Q0F0, E9Q0M9, E9Q0U7, E9Q0Y4, E9Q133, E9Q166, E9Q175, E9Q1Z0, E9Q2X6, E9Q3G8, NOLC1, E9Q5F6, E9Q616, MYO1E, E9Q6A9, E9Q6M7, E9Q6T8, E9Q8F0, E9Q9C7, E9Q9H2, E9QA74, E9QAT0, E9QKG6, E9QLM4, E9QN31, E9QNH6, E9QNN1, E9QPE7, E9QPI5, F2Z480, F6S6G6, F6T0G2, F6TFN2, F6TW20, F6WTC8, F6XWD4, F6YRW4, F6YUI5, F7B296, F7C312, FARP1, F8VPX1, F8VQ29, F8WHR6, G3UWP5, G3UWZ0, G3UX48, G3UYD0, G3UYG6, G3UYW3, G3UYZ0, G3X8P9, G3X8Q0, G3X956, SI1L3, G5E839, G5E846, G5E866, G5E879, G5E8C3, G5E8J8, G5E8N3, G5E8T6, H3BJU7, H3BKF6, H3BKM0, H3BKN0, H3BKT5, H3BL49, J3QMC5, J3QNW0, CAN2, ATN1, SRSF5, IMA3, PININ, EIF3D, ATX2, E41L2, UGDH, SP3, IF2B1, ZFR, HIPK1, IGKC, IGHG1, HBA, K2C1, TBA1B, ALBU, HS90A, NUCL, ATX1L, EF1A1, H2B1F, CO1A1, HS90B, TCPA, GELS, HS71L, AP2A2, K1C19, BIP, VIME, MFGM, EIF3A, MCM3, MOES, CTNA1, U2AF2, PDIA3, GRN, PABP1, FKBP4, KIF4, TSP1, GRP75, TKT, BCL6, FOXK1, H14, NEDD4, LMNA, MCM5, K2C6A, IMA1, KPYM, DDX6, ACTN4, EF2, ASXL1, ACTB, ABCE1, RRAS2, H4, HSP7C, CH60, TBA1A, TBB4B, H31, IMB1, TCPB, TCPE, TCPZ, WNK1, H32, MPRIP, G3BP1, TBB5, HNRL2, TOP2A, UBA1, PLAK, IF2P, EPS8, LRIQ1, ZCH18, LMTD2, FA83H, CDCA2, CYTSA, SPP2B, Q3TJ56, K22E, FUBP2, Q3U6F1, Q3U8S1, FOXK2, PUF60, Q3UID0, Q3UJB0, Q3UNN4, SFSWA, K22O, CFA74, Q3UYN2, LRRF1, ESF1, KIF22, Q3V3Y9, Q45VK5, Q4FJZ2, Q4KL80, Q4TU83, PDS5B, DDX17, LRC47, Q52KR6, TR150, NEXMI, JCAD, NUFP2, PRSR1, RBM27, PHF12, UTP18, LC7L3, Q5SUT0, TSR1, MYO1D, Q5U4C5, SIN3A, SRC8, MYL6, STIP1, CAPR1, IMA5, LAP2A, HCFC1, K1C15, SMRD1, FXR1, DDX5, HS71A, SERA, KINH, MYH10, SIN3B, DDX3X, TIF1B, NUP62, K1C12, SQSTM, TOP2B, Q68EM3, CLH1, CDC5L, F120A, CNDG2, NOP58, SCAF8, K1C42, K2C1B, SR140, ZC11A, ABCF1, RRP12, Q6P5B5, UGGG1, XPO1, KIF11, FHOD1, LPPRC, NUP98, Q6PGF5, NEB2, DAPLE, UBE2O, LARP1, NU188, WDR43, 2AAA, Q792Z1, PICAL, UHRF2, MBB1A, Q7TQE2, NU214, WNK4, KIRR1, UBP2L, FLNB, WNK3, Q80ZX0, LPP, ACTBL, P4HTM, MYPT2, HTSF1, IF4B, NU107, WDR3, NOC4L, CE128, NUP93, SUN2, RCC2, EMSY, SYLC, CKAP4, SRRM2, NUP54, PWP2, SYIC, RL1D1, MAP1S, TTC34, SI1L1, RBM14, Q8C872, DIDO1, ATAD2, NUP88, Q8CFQ9, SMC2, UACA, SYEP, TCRG1, OGT1, CCAR1, SLTM, BICRL, P66A, COPA, HMCS1, Q8JZN2, EIF3B, BCLF1, PHLB2, NAT10, ANLN, SDHA, LS14A, MATR3, DDX18, PO121, EIF3L, HNRPL, NU133, EIF3C, ZC3HA, TDIF2, NUP58, CD109, LUZP1, UTP6, MYH9, UHRF1, VIGLN, CCAR2, CUL7, K2C79, Q8VGW3, RBM39, DHX36, SFPQ, ACLY, DDX1, U3IP2, SYYC, RPN1, YTHD2, BMP2K, SNX18, SMCA5, Q921K2, SF3B3, DDX27, Q921S6, SMTN, PP6R3, K2C5, DEN2B, NXF1, NONO, ACON, NMD3, RTCB, CT2NL, HSP7E, NU155, IF2B3, Q9CPN9, SMC1A, SMC3, CXXC1, GARS, CEP72, SC23B, Q9D6D0, NOP56, FIP1, SPB1, MYPT1, NVL, EIF3F, RAI14, RENT1, CPSF1, PESC, VPS35, LIMA1, DKC1, PALLD, NUP50, DDX21, FLII, YBOX3, IQGA1, Q9QUK9, CAF1A, K1C17, MAGD1, MTA2, PR40A, MYO1C, COR1C, E41L3, EHD1, WDR46, ZO2, NU160, ADNP, SYVC, Q9Z1R9, BAZ1B, K1C16, SNUT1, S4R2A9, S4R2J9, V9GX87
Species: Mus musculus
Download
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation Is Essential for Rapid Pomc Expression and Cell Proliferation in Corticotropic Tumor Cells. Endocrinology 2021 162(12) 34418053
Abstract:
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients because of profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlate with their onset or severity. Herein, we investigate the impact of the O-GlcNAc posttranslational modification in their etiology. Found in more than 7000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancer progression and endocrine diseases such as diabetes. In this study, we demonstrated that O-GlcNAc enzymes were upregulated, particularly in aggressive adrenocorticotropin (ACTH)-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we showed that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hypersecretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrated that Pomc messenger RNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By affecting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
O-GlcNAc proteins:
GPTC8, ITB4, PTPRF, VIR, HMCN2, SETX, RTF1, MYH7B, FSIP2, TITIN, ARGAL, CO6A5, MMRN2, STOX1, PLXB2, AGRG4, F25A2, LOXH1, HMCN1, TM233, PIEZ1, TOPZ1, CE350, M3K19, RYR2, ACACB, RN213, CF251, ARHG5, BICRA, FOXM1, DLDH, PEX5, WRN, CELR1, PROM1, STK10, MYPC3, DTNB, IKKB, ACTN3, ALDOC, RPB1, LMNB1, MAP1B, HVM57, PAI1, MCM3, MIS, RGRF1, MSRE, CTND1, RB22A, ZO1, QOR, ANXA5, MSH6, EVC, KCNN2, DEPD5, NOE3, TBB4B, ROCK1, GSH1, G3BP1, ATS1, TBB5, NF1, PGBM, IF2P, FA8, GDF3, KCMA1, ZCH18, TANC1, NSUN7, SHRM4, FAT4, IGFN1, HMHA1, FA98A, SCRN3, CH048, K22E, SHLD2, BIG3, SDK1, BAHC1, SLMAP, TBCD9, RIMB3, DYH12, ITAD, CKAP2, IGS10, A3LT2, ITA1, HERC2, XIRP2, TR150, IQEC2, LRC8B, FAT2, S39AC, VP13A, MTUS1, GSTCD, TENS3, ACACA, UTP20, KLRA4, PAPOA, STAR3, EWS, KTN1, GRID1, DDX5, CP131, SEM3B, TLL1, MINT, CCPG1, BTF3, TPP2, RBL1, COBA2, TASOR, PDS5A, CE290, NAL14, A2MG, ZZZ3, FREM2, CPSF6, RPRD2, HEAT6, P4R3A, FIL1L, SNX6, GAPD1, PTN23, TRI37, MON1A, MSL1, SARM1, CENPE, DAPLE, TIAM2, UBE2O, KDM3B, SYNE1, CMYA5, FHOD3, TBB2A, MYCB2, SGO2, MCAF1, STAR9, CAPS1, PHF8, CUL9, CLAP1, ST18, SGSM2, TAF1, M18BP, UBP2L, FLNB, OFD1, PTHB1, PDK1, TMCO3, NRDC, MARF1, TM87B, UNC80, TCAF1, KTU, UBP43, CAPS2, ZN609, DOCK2, RHG24, NAKD2, LENG8, UFL1, CD158, CLASR, SSPO, SLTM, NAV1, FBX4, RFWD3, MICA3, STAU2, NEIL3, CCD14, DDX18, UBP45, AL1L1, CCD80, TF2H3, FYCO1, HNRPU, DYH5, DHX36, AGRV1, FLNC, REST, NDUS1, CREL1, CELR3, DYST, BRWD1, GOGA2, PDIA6, TM1L1, RT4I1, CSTN3, PRP19, TARA, UBP16, NOG2, MYO7B, BCDO2, RTN4, RRBP1, ZN318, DHX30, MITOS, RBM33, NARF, KLH35, ACSL3, SYRC, C16L2, NBEA, TBB3, XPO4, RBCC1, LRP1B, CAC1F, PRG4, BIR1B, SRCN1, SHRM3, ING1, MACF1, ACL7A, SMK2B, H17B6, RPGR, RHG07, MAST1, ADA11, TIM, PFKAP, IRAG1, DEMA, P2R3D, SETBP, NEK4, PLD1
Species: Mus musculus
Download
Gurel Z, Zaro BW, Pratt MR, Sheibani N. Identification of O-GlcNAc modification targets in mouse retinal pericytes: implication of p53 in pathogenesis of diabetic retinopathy. PloS one 2014 9(5) 24788674
Abstract:
Hyperglycemia is the primary cause of the majority of diabetes complications, including diabetic retinopathy (DR). Hyperglycemic conditions have a detrimental effect on many tissues and cell types, especially the retinal vascular cells including early loss of pericytes (PC). However, the mechanisms behind this selective sensitivity of retinal PC to hyperglycemia are undefined. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification is elevated under hyperglycemic condition, and thus, may present an important molecular modification impacting the hyperglycemia-driven complications of diabetes. We have recently demonstrated that the level of O-GlcNAc modification in response to high glucose is variable in various retinal vascular cells. Retinal PC responded with the highest increase in O-GlcNAc modification compared to retinal endothelial cells and astrocytes. Here we show that these differences translated into functional changes, with an increase in apoptosis of retinal PC, not just under high glucose but also under treatment with O-GlcNAc modification inducers, PUGNAc and Thiamet-G. To gain insight into the molecular mechanisms involved, we have used click-It chemistry and LC-MS analysis and identified 431 target proteins of O-GlcNAc modification in retinal PC using an alkynyl-modified GlcNAc analog (GlcNAlk). Among the O-GlcNAc target proteins identified here 115 of them were not previously reported to be target of O-GlcNAc modification. We have identified at least 34 of these proteins with important roles in various aspects of cell death processes. Our results indicated that increased O-GlcNAc modification of p53 was associated with an increase in its protein levels in retinal PC. Together our results suggest that post-translational O-GlcNAc modification of p53 and its increased levels may contribute to selective early loss of PC during diabetes. Thus, modulation of O-GlcNAc modification may provide a novel treatment strategy to prevent the initiation and progression of DR.
Species: Mus musculus
Download