REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Qin K, Zhu Y, Qin W, Gao J, Shao X, Wang YL, Zhou W, Wang C, Chen X. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. ACS chemical biology 2018 13(8) 30059200
Abstract:
Large-scale quantification of protein O-linked β- N-acetylglucosamine (O-GlcNAc) modification in a site-specific manner remains a key challenge in studying O-GlcNAc biology. Herein, we developed an isotope-tagged cleavable linker (isoTCL) strategy, which enabled isotopic labeling of O-GlcNAc through bioorthogonal conjugation of affinity tags. We demonstrated the application of the isoTCL in mapping and quantification of O-GlcNAcylation sites in HeLa cells. Furthermore, we investigated the O-GlcNAcylation sensitivity to the sugar donor by quantifying the levels of modification under different concentrations of the O-GlcNAc labeling probe in a site-specific manner. In addition, we applied isoTCL to compare the O-GlcNAcylation stoichiometry levels of more than 100 modification sites between placenta samples from male and female mice and confirmed site-specifically that female placenta has a higher O-GlcNAcylation than its male counterpart. The isoTCL platform provides a powerful tool for quantitative profiling of O-GlcNAc modification.
O-GlcNAc proteins:
A0A0A6YVU8, A0A1B0GSG7, RBM47, ZN335, A2A8N0, TITIN, SBNO1, CNOT1, PHRF1, ZN462, TAGAP, D3YUK0, E9PUR0, E9PVW1, E9PWI7, E9PYB0, PARP4, E9PZS2, E9Q2C0, E9Q3G8, E9Q616, BD1L1, E9Q732, ARHG5, E9Q7N9, E9Q842, E9Q9B4, E9Q9Q2, E9QA22, E9QAE1, F6Y6L6, F8VQ29, F8VQM5, J9JI28, PDLI1, SPT5H, TAF4, ARI1A, ABLM1, KMT2D, MYPT1, ZN609, SET1A, SYNEM, PUR4, TNC18, KDM6A, DPOD2, M3K7, TPD54, SYNJ1, ZN207, SRPK2, ACK1, SYUA, MYPT2, KIF1B, HBP1, OGA, VINEX, PLIN3, MAFK, BRD4, PDLI1, KDM6A, SRPK1, N4BP1, ANR17, NCOR1, CREG1, CRTAP, MYO1A, MTR1L, CREG1, TOX4, SUN1, M3K6, PSMG1, SC24B, CNOT4, ABL1, ABL1, EGFR, LAMC1, LMNA, GLCM, GCR, HSPB1, PPBT, RLA2, ITB1, K1C18, K2C8, SAP, CATL1, LAMB1, ENPL, BGLR, NFIC, VIME, SNRPA, ROA1, ATX1L, TGAP1, GLI2, HLAC, CATB, TAU, BIP, FINC, K2C8, TPR, MSH3, ENPL, PO2F1, ATF2, GNS, ZEP1, RS2, MUC1, JUNB, ATF7, CATD, SON, SERPH, NELFE, BIP, ROA2, CBL, IF4B, APC, ARNT, MAP4, TEAD1, RXRA, RXRB, RXRG, CLIP1, AIMP1, HXA11, ELF1, NU214, MP2K2, VATA, CUX1, PBX2, MLH1, STAT3, SSRB, KI67, STT3A, RFX5, LMNA, DPOD2, PAXI, CDK8, YLPM1, NU153, RBP2, TAF6, EMD, PPT1, FXR1, ICAL, HCFC1, AGFG1, NUP98, ATX1, ATN1, PTN5, AF17, DSRAD, AMRP, ACYP2, NU107, ACOT8, S26A1, TB182, YTHD1, ASXL1, PI5PA, RIN3, MRTFB, RL37, KCNA2, RALA, STIM1, PITX1, IF4G2, SRPK2, RENBP, COG7, WNK1, SERF2, RPTN, SPSY, DAB2, RBM10, HNRPU, SPTB2, FOXK2, EWS, MEF2A, SP2, CO7A1, S30BP, NUCB1, ENL, IF4G1, K1C17, TLE3, TLE4, TOP1, SUH, CBG, ACK1, DEMA, AHNK, FOXO1, TROAP, BPTF, NFIA, ROA0, G3BP1, PABP4, ATM, PICAL, MAMD1, RIPK1, STIM1, MTMR1, CUL4B, ASPP2, KLF5, NFYC, CDK13, VEZF1, DSG2, TRI29, UBP2L, SRC8, PUM1, EPN4, RRP1B, NCOA6, DIP2A, MEF2D, NUMA1, R3HD1, KIF14, EBP, RCN1, KS6A1, RBMS2, TAF1C, NCOA2, SF01, JHD2C, MARE1, ELF2, TAB1, ZFHX3, ZYX, ADRM1, CCDC6, TAF9, STX1A, RFX7, QSER1, QRIC1, PRC2C, PBIP1, GSE1, TNR6A, CEAM5, Q3UKP4, COBL1, ARH40, SC31A, PEG3, SRBS2, Q3UU43, F91A1, ARBK2, Q497W2, Q4KL65, PHAR4, EPC2, CRTC2, BCORL, K2026, TGO1, PRC2B, TOIP1, SPG17, SHRM1, ZN362, LRIF1, RHG21, UBAP2, RBM26, RPRD2, ZN318, NCOR1, LAMA5, HCFC1, P3C2A, SAP, AP180, MAFK, SPTB2, SH3G1, ZYX, TSH3, INADL, WAPL, KAZRN, SBNO1, ARID2, DYH17, SAM9L, CDK13, LAR4B, BICRL, RHG21, HELZ, TTLL5, PANX2, PKHG2, NIPBL, LIN54, F135A, RPRD2, IF4G1, SPIC, SCYL2, NFRKB, INT1, ZN182, UGGG1, MDEAS, ZC3HE, RICTR, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NU188, CO039, UBN2, HAKAI, ASXL2, SPT6H, DDX46, KDM3B, PICAL, PRC2B, OOG2, ZIC5, NRK, POGZ, MAVS, CLAP1, EMSY, I2BP2, SRGP1, SH3R1, HUWE1, YTHD3, NU214, UBP2L, TMC5B, ZN598, TOPRS, SHAN2, Q80ZX0, ZNF18, Q810G1, BCL9L, LUZP1, PRSR1, DDX42, PALB2, P66A, GNS, LPP, TB10B, TGO1, Q8BIB6, ZN771, ZNT6, AAPK2, CNOT4, SP110, IFFO1, YTHD3, NCBP3, DEFI6, RBM14, CNOT2, CABS1, Q8C6L9, TCAL5, TAB1, SCYL2, ASPP2, PHC3, EPN2, PDLI5, I2BP1, RN135, AHNK2, NAV2, MISP, MGAP, ANKH1, PHAR4, XRN1, PELP1, Q8JZK6, Q8K0U8, AGFG1, TXD11, IL23R, ARHG6, SPART, SPICE, NUP93, CLASR, ZN786, SYNPO, FNBP4, ARFG1, ENAH, TNR6A, PHC3, SP20H, NAV1, VP37A, KMT2C, BD1L1, NUP35, STXB6, KNL1, TCAL3, MTSS1, SPART, NUP35, PUM2, STT3B, ALMS1, GEMI5, WIPF2, MAVS, UTP6, PI3R4, AMOT, P66B, STAG1, PCNP, LMO7, ATX2L, CSKI2, P66B, BBX, TITIN, HNMT, UBAP2, DCP1A, NRIF1, SMG7, RTF1, MAML1, ZN592, LAR4B, TAF4B, SHIP1, DDX17, RENT1, GPKOW, FUBP2, LPP, TTC28, PF21A, INT12, RCN3, CERS2, PDLI5, FUBP3, MY15B, ANCHR, CLP1L, Z512B, ZFR, EP400, NOL4L, RBM14, CIC, MED15, PIGS, DCR1C, SIN3A, MINT, EYA3, TEAD3, ATX2, RFC4, DHX58, ANX13, GORS2, TAB2, EPN4, ANR17, DPH2, WAC, DIDO1, YTHD1, AMRA1, TANC1, TXD12, F133B, RBM33, GPI8, Q9D2U0, ZC21B, FUND2, F162A, APMAP, Q9D809, FIP1, CNPY3, Q9DAV5, Q9DB24, ALG2, PLIN3, MYPT1, WWTR1, Q9EQC8, SALL1, RBP2, GILT, MFF, SP130, APC1, I2BPL, RBNS5, EPC1, ADNP, ZN106, TM245, CPVL, PTN23, WNK1, E41L1, ZHX3, ZN335, PKHG2, CCSE2, CQ10B, MLXIP, PKHA5, RC3H2, TAF9B, ZBT20, NCOA5, ZN532, APMAP, HYOU1, ADRM1, GIT2, BAG3, UBN1, PDLI7, DIAP3, RBM12, CARF, ETAA1, HXC10, TAB2, UGGG1, CDK12, ITSN2, CNOT2, TMEM9, DAPLE, NYAP2, KANL3, SON, LIMD1, KI21B, KI21A, PPIE, PCM1, GALK1, MRP5, SE1L1, LIMD1, TCF20, SUN2, AFF4, UBQL2, S30BP, NRBP, SIX4, TASOR, GMEB2, PARP4, NUP50, ZHX1, YETS2, HECD1, SCAF8, SRRM2, SCML2, S22AL, NCOR2, DEMA, POLH, R3HD2, ZN281, FBX7, RPGF2, IRS2, HYOU1, PRC2C, NCOR2, GMEB1, S23IP, SRPK3, Q9Z0I7, VNN1, KLK4, SE1L1, RGS6, E41L1
Download
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Molecular & cellular proteomics : MCP 2012 11(8) 22645316
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
O-GlcNAc proteins:
A0JNY3, A2A653, A2A654, TANC2, ZEP3, MA7D2, CKAP5, CAMP1, LZTS3, A2AIR4, A2AJ19, AJM1, MA7D1, A2ALK6, RPGP1, UBR4, A2AP92, SKT, ANR63, A2ATK9, A2AUD5, A2BI30, A6H6J9, A6MDD2, A8DUV1, B1AQX6, B1AR09, GRIK3, B1ATI9, B1AWT3, NHSL2, FRS1L, UBP24, DLGP4, B2RQ57, B2RQ80, PYR1, B2RQL0, B2RQQ5, GNAI1, B2RUE8, OTU7B, B2RWX1, B6ZHC4, B6ZHC5, B7ZCA7, B7ZMP8, B7ZNA4, B7ZNF6, B7ZWM6, B9EHE8, CTTB2, B9EKL9, PTPRZ, D1FNM8, D3YU59, D3YWX2, DGKH, D3YXR8, PGBD5, SHAN1, D3Z0V7, D3Z2J5, D9HP81, E0CYT1, E9PU87, E9PUA3, E9PUC4, DGKD, E9PUR0, E9PV14, E9PV26, KI67, E9PWL1, E9PWM3, E9PY55, E9PZP8, E9Q1M1, E9Q2B2, E9Q3D6, E9Q3G8, E9Q3M9, E9Q4N6, E9Q616, E9Q6T8, E9Q6Y8, NUMA1, E9Q828, E9Q9I2, E9Q9J6, E9QA16, E9QAP7, E9QAR5, SC16A, E9QJU8, E9QMJ1, RFIP2, HXK2, CAN2, SC22B, DPYL2, STXB1, TCOF, DCTN1, GLU2B, EF2K, PRDX4, AIP, NUMBL, GSTO1, GSH0, M3K5, PSMD4, DHX15, NPC1, BMPR2, VIAAT, BCAT2, CTND2, PITM1, CSK22, REPS1, ACK1, SLK, CAC1B, PGRC1, IMPA1, SYUA, AKA7A, STRN, RL35A, AT2A2, PGAM2, ATX2, NMT1, E41L2, GPX4, EMC8, DHB12, HCN4, KDM6A, ZN326, SORL, GRPE2, KLC1, ZFR, O88568, HCN2, HCN1, BSN, TOM1, RPP30, DNJB5, COX1, HA1D, HBA, K2C1, MBP, ALDOA, PGFRB, LDHA, G6PI, ENPP1, NEUM, ANXA2, RIR1, HS90A, EGR1, MDHM, KCC4, NFL, NFM, GNAI2, PDIA1, NUCL, CADH1, RC3H2, LRC4B, IGS11, DERPC, UBB, IFI5B, IFI4, ANXA1, EF1A1, H2B1F, PARP1, HS90B, DMD, KCC2A, TCPA, A4, COX5A, GELS, UMPS, NCAM1, GPDA, MDHC, SRP54, RLA0, GLNA, H12, LEG1, DDX3L, SPTN1, AP2A2, TPIS, KS6A3, COF1, GNAO, NFH, SERPH, VIME, MTAP2, TPM3, EIF3A, CBX3, IMDH2, MCM3, CTNA1, MAP4, GNA12, GNA13, PDIA3, PSB8, NCKP1, PABP1, FKBP4, HMGB2, AIMP1, LA, ACM4, SYWC, RANG, RAB5C, RAB18, CALX, PRDX1, RL12, PPM1B, DNLI1, CAP1, STAT3, PURA, OPRM, TCPQ, CX6A1, MSH2, H14, H11, ALDR, ALD2, CBP, AINX, NEDD4, RP3A, CAPZB, SRPRB, RL36, SOX2, HS74L, ADT1, ROA1, INPP, PCY1A, MCM4, CSRP3, RAB7A, CDN2A, HDGF, ADT2, IMA1, UBP10, KPYM, RIDA, HMGA2, RL10A, CCHL, SOX1, RAB2A, ATX1, CACB3, HMCS2, GOGA3, ATPK, ATPB, ACTN4, IDI1, ACOT8, PTPA, KCNN2, KCNN3, TB10A, TB182, SF3B6, MRTFB, DOCK4, MYPR, EIF3E, PCBP1, LIPA3, ACTB, IF4A1, SNP25, RAB10, CSN2, HNRPK, RRAS2, PRS8, RS15A, 1433E, RS18, RS11, SMD1, ABI2, EF1A2, ACTA, VATB2, RL23, RS24, GBB1, HSP7C, TCTP, GNAS2, 1433Z, HMGB1, IF5A1, ACTG, RS17, RS12, UB2L3, RACK1, ACTS, 1433T, TBA4A, TBA1A, TBB4B, PLXA2, DCC, EBP, NFIX, EM55, HNRH2, NCOA1, ELAV1, RGRF2, USP9X, TCPB, TCPE, TCPZ, NUCB2, IRS2, WNK1, RL36A, CSRP1, SEPR, RS3A, DPYL1, MPRIP, CAC1A, ATP5J, BOP1, RS5, WBP2, CXAR, PLPL9, G3BP1, RBBP6, CDS1, TBB5, IL6RB, NMDE2, NMDE3, TOP2A, NOTC1, NDKB, AQP1, UBA1, CTNB1, S30BP, NFIA, NUCB1, MARK3, APLP1, ENAH, ATPA, TF65, YES, MARK2, PGBM, PYC, CAPR2, EMAL1, LARP7, BAX, CNN2, LYAR, CHD8, CNNM1, INF2, TT21B, Q0IJ77, TRIO, VGF, TANC1, CDK12, Q14B66, MA6D1, NSUN2, MCM9, PHAR1, PSD3, Q2Q7P0, FILA2, Q3TAD4, NB5R4, GUAA, METK2, PRC2C, Q3TRG3, PLPL6, K22E, YETS2, Q3TY93, FUBP2, F117B, Q3U882, LBR, TM109, FOXK2, Q3UFK1, Q3UGZ4, TNR6C, DAB2P, ZEP2, AAK1, Q3UHT7, DTX3L, EDC4, PARP3, WASC4, GRIN1, Q3UQ23, SRBS2, THSD4, MRCKA, SPRY3, KSR2, GRM5, TBCD9, LRRF1, ARMX5, STOX2, SHAN3, UBN1, OXR1, DDX17, PHAR4, ANR28, ZN608, Q571B7, PRAG1, TAB3, Q58DZ3, IQEC2, Q5DU62, AAPK1, NUFP2, UNKL, SMG7, RBM27, CYFP2, TM1L2, PSME4, ANR40, Q5SUH6, GGNB2, SYNRG, Q5SVJ0, RPGP2, TBC9B, ACACA, Q5SXC4, Q5XJV5, LMTK3, RN123, ZDHC8, SRC8, MYL6, SKI, SAMH1, IRGM1, CLD11, NPT2A, SPB6, VDAC2, VDAC3, VDAC1, STYX, RBBP4, ASNS, NCOA2, LAP2A, PPM1G, ASTN1, PRDX2, HCFC1, APC, KCNA4, AP180, FXR1, GDIB, GRID2, GRID1, CBX5, HS105, SERA, LASP1, NPM, PCBP2, M3K7, SRBS1, DBNL, SH3G1, CYTB, IF4G2, MINT, ZYX, RALY, TFE3, Q640L6, AR13B, HECAM, NPDC1, SYN2, TBR1, ISG15, ABCG1, ATP4A, MRC2, G3PT, PTN13, TPP2, PUR2, CTNA3, SBNO1, BEGIN, K1549, GIT1, SLAI1, PKP4, PEAK1, CDK13, SH3R1, MYOF, ABLM3, ARMX2, CE170, LAR4B, NOP58, Q6GR78, TPM4, NIPBL, RRP5, FBX41, Q6NVA3, RPRD2, WWC2, ZN532, Q6NXW0, S23IP, SMHD1, NEST, CSKI1, Q6P9N8, MTSS2, AHDC1, PTN23, TRAK1, SRSF1, CHD4, DLGP3, NUP98, NYAP1, KCC2D, AT1A3, AT1A2, NFRKB, DDX58, MAGI1, WDFY3, TACC1, GGYF2, PF21A, KDM3B, CNOT1, LARP1, Q6ZQB7, NU188, Q6ZQJ9, Q6ZQK4, RS9, RL10, IF2A, SC6A5, SEM6D, 2AAA, F102A, MTCH2, PICAL, MRO2B, SCN4B, PLPR4, HNRPQ, TBB2A, SMAP2, Q7TNS5, PLPR3, MBB1A, LNP, TPPP, ATX2L, OTUB1, EXOS3, MAP6, ELP1, SI1L2, LRRC7, ERBIN, PHF24, R3HD2, NAV3, AGRL3, Q80TS6, AUXI, MADD, AVL9, PUM1, UBP8, NU214, SEPT9, NAA15, CAMP3, FA98B, TDRKH, EPN1, TMCC2, AGFG2, UBP2L, Q80X68, C2C2L, FLNB, LRRT4, WNK3, PRIC2, CNKR2, ZN598, SHAN2, AGRB3, Q80ZX0, ZFYV1, MAST4, RHG32, Q8BFW6, LPP, PEF1, ACTBL, ROA3, TET3, MYPT2, IF4B, SYAC, F168A, TBL1R, TB10B, CK049, CARF, TGO1, FRM4A, SYIM, ANS1B, DLGP2, ZNT6, RCC2, ABLM2, LSS, UNC80, NOE2, CF015, EMSY, ODP2, GGA3, SYLC, DMXL2, IMP2L, CLAP2, LIPA2, ASPH, CNOT4, FLNA, F163B, GEPH, CREST, KCC1D, PGES2, KANK2, GEMI5, IFFO1, OSBL6, YTHD3, TM266, POGZ, LACC1, MAP1S, A16L1, SI1L1, PP4R4, MYO9A, THOP1, RBM14, Q8C2R1, CNOT2, Q8C6E9, CC134, ANK2, ELFN1, DIDO1, NHSL1, WDR37, DCTN4, SYNPO, BCAS3, VCIP1, Q8CE98, TAB1, SCYL2, NED4L, SYEP, F193A, GNAL, OGT1, NAV1, SYNJ1, RPGF2, EP400, PHC3, P66A, TBCE, VWF, STAU2, LIN7A, TBC23, ZBT20, RTN1, HS12A, DNM1L, UNC5B, UNC5A, ANLN, AGFG1, MATR3, Q8K314, AHI1, NDUS8, I2BPL, PREP, ABLM1, EIF3L, ERF3A, HNRPL, IQEC1, DOCK7, DC1L1, SPART, BST2, RFIP5, AT2A1, NUP35, LUZP1, MAVS, MYH9, PARN, AT1A1, SIR2, SNRK, ZDHC5, CC50A, AMOT, AGAP3, MARK1, Q8VHM5, FLNC, SFPQ, CPIN1, WDR13, BACH, S12A5, RAB14, ACLY, MIC25, ATPG, DDX1, SH3L3, UBAP2, NCOA5, CSDE1, FRS3, ZFN2B, DLG2, PTBP2, SRGP1, TMLH, DYST, SYUB, ELOV6, ALS2, TADBP, TBB6, CLIP1, LRC59, K2C5, UBXN1, SIR1, SPRE1, PAWR, MED1, MEP50, STML2, UBP11, NONO, RRAGC, VMA5A, MAOM, DCTN2, NEUA, DDAH2, DNJA3, TRXR3, RB6I2, SRRT, DSRAD, Q99NC2, RIMS1, ANR17, RTN4, NU155, NTRI, RRBP1, ZN318, TRI33, ATP5L, RL17, GLOD4, Q9CQ43, SDHB, GLRX3, IFM3, NECP1, OCAD1, RRP44, TBB2B, DDAH1, YIF1B, ROA0, NIP7, MPPB, CYBP, RL11, TECR, CHTOP, PAIRB, QCR1, NNRD, GARS, TOM70, RS19, SYRC, CNDP2, TMEDA, ODO2, DLGP1, TBB4A, IDH3A, IPYR, RL37, FIP1, TIM50, EF1G, RM17, GSDMD, DDA1, F135B, TM263, CNN3, PLIN3, PGAM1, XRN2, MYPT1, DJC10, KC1D, GNAI3, PUR6, S38A3, NDUBA, CRIP2, TSC1, RAI14, NBEA, TCF20, SORC2, DPYL5, TBB3, RBP2, ARHG7, RTN3, SPN90, RBCC1, PSMG2, DDX24, CLD12, PALLD, ELF2, TMOD3, NUDT3, COPB, NUP50, DDX21, TULP4, FLII, RPF2, CCG3, TBA8, IQGA1, NECT1, ADRM1, FMN2, MPP5, DCLK1, BAG3, CUL3, MINK1, REEP6, TRXR1, SYGP1, SON, APBB1, DREB, SPY2, MACF1, ULK2, ZBP1, TOM40, ADDA, GOGA5, DNJB1, MAP1A, PCLO, GAB1, RIPK3, NPAS3, SH2D3, NUBP2, ZEB2, SYT7, DEST, TEBP, SRS10, RPGR, PR40A, KHDR3, TPSN, CDYL, KAD2, TEN1, PDC6I, CHIP, IF4H, COR1B, COR1C, TNIP1, GANP, ARC, MPP2, SHAN1, VAPA, GSK3B, DEMA, E41L3, JIP1, GBP2, CAD20, P5CS, LAT1, DYR1B, MD2L1, SAE2, APCL, SYVC, MTMR1, MECP2, E41L1, SUCB1, HDAC6, GRIA4, HOME1, OSB10
Download
Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 2011 108(23) 21606357
Abstract:
The monosaccharide addition of an N-acetylglucosamine to serine and threonine residues of nuclear and cytosolic proteins (O-GlcNAc) is a posttranslational modification emerging as a general regulator of many cellular processes, including signal transduction, cell division, and transcription. The sole mouse O-GlcNAc transferase (OGT) is essential for embryonic development. To understand the role of OGT in mouse development better, we mapped sites of O-GlcNAcylation of nuclear proteins in mouse embryonic stem cells (ESCs). Here, we unambiguously identify over 60 nuclear proteins as O-GlcNAcylated, several of which are crucial for mouse ESC cell maintenance. Furthermore, we extend the connection between OGT and Polycomb group genes from flies to mammals, showing Polycomb repressive complex 2 is necessary to maintain normal levels of OGT and for the correct cellular distribution of O-GlcNAc. Together, these results provide insight into how OGT may regulate transcription in early development, possibly by modifying proteins important to maintain the ESC transcriptional repertoire.
Download
Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proceedings of the National Academy of Sciences of the United States of America 2009 106(22) 19458039
Abstract:
Protein O-GlcNAcylation occurs in all animals and plants and is implicated in modulation of a wide range of cytosolic and nuclear protein functions, including gene silencing, nutrient and stress sensing, phosphorylation signaling, and diseases such as diabetes and Alzheimer's. The limiting factor impeding rapid progress in deciphering the biological functions of protein O-GlcNAcylation has been the inability to easily identify exact residues of modification. We describe a robust, high-sensitivity strategy able to assign O-GlcNAcylation sites of native modified peptides using electron transfer dissociation mass spectrometry. We have studied the murine postsynaptic density pseudoorganelle and report the assignment of 58 modification sites from a single experiment--significantly increasing the number of sites known in the literature. Components of several repressor complexes, such as NCoR1, polyhomeotic-like protein3, and EMSY, are modified. In addition, 28 O-GlcNAc sites were found on the protein Bassoon, effectively matching the number of phosphorylation sites reported previously on this protein. This finding suggests that on certain proteins, O-GlcNAcylation may be as extensive and important as phosphorylation in regulating protein function. Three of the newly discovered O-GlcNAc sites on Bassoon have previously been reported as phosphorylation sites, highlighting the interplay of the modifications. Surprisingly, several peptides with GlcNAc modifications on asparagines within the N-X-S/T consensus sequence were also observed from membrane protein extracellular domains. This powerful strategy fulfills a long-standing need in the biological community by facilitating modification site identifications that will accelerate understanding of the biological significance of this elusive regulatory posttranslational modification.
O-GlcNAc proteins:
ANK3, CTND2, BSN, NFL, NFM, ZEP2, NCOR1, ABLM3, EMSY, PHC3, ABLM1, DLGP1, RIMS2, PCLO, DEMA
Species: Mus musculus
Download
Page 1 of 1