REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (17 results)


Wong YK, Wang J, Lim TK, Lin Q, Yap CT, Shen HM. O-GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a pro-survival mechanism in cancer cells. Proteomics 2022 22(9) 35083852
Abstract:
Protein O-GlcNAcylation is a specific form of protein glycosylation that targets a wide range of proteins with important functions. O-GlcNAcylation is known to be deregulated in cancer and has been linked to multiple aspects of cancer pathology. Despite its ubiquity and importance, the current understanding of the role of O-GlcNAcylation in the stress response remains limited. In this study, we performed a quantitative chemical proteomics-based open study of the O-GlcNAcome in HeLa cells, and identified 163 differentially-glycosylated proteins under starvation, involving multiple metabolic pathways. Among them, fatty acid metabolism was found to be targeted and subsequent analysis confirmed that fatty acid synthase (FASN) is O-GlcNAcylated. O-GlcNAcylation led to enhanced de novo fatty acid synthesis (FAS) activity, and fatty acids contributed to the cytoprotective effects of O-GlcNAcylation under starvation. Moreover, dual inhibition of O-GlcNAcylation and FASN displayed a strong synergistic effect in vitro in inducing cell death in cancer cells. Together, the results from this study provide novel insights into the role of O-GlcNAcylation in the nutritional stress response and suggest the potential of combining inhibition of O-GlcNAcylation and FAS in cancer therapy.
O-GlcNAc proteins:
RUXGL, ADAS, DX39A, MYO1C, IPO5, PESC, NOP56, DDX3X, SCD, MGST3, HNRDL, XPO1, SURF4, OGT1, PPM1G, MOT4, DHX15, CYB5B, SERA, HNRPR, BUB3, ACTN4, MYO1B, GANP, HNRPQ, NDUS7, MPU1, H2AY, FLNB, SC22B, SF3B1, U520, UTP20, NU155, ATP5H, RL1D1, MTA2, RTN3, VAPB, IPO7, ACSL3, BAG2, TOM40, LDHA, DHE3, AATM, PGK1, ASSY, LMNA, TFR1, ALDOA, K2C1, G3P, HSPB1, RPN1, AT1A1, ADT2, PCCA, RLA1, RLA0, LA, K1C18, K2C8, ATPB, ENOA, NPM, TPM3, LDHB, PDIA1, ANXA2, TBB5, TRY1, PROF1, SYEP, HS90A, HNRPC, DAF, 4F2, HS90B, ODPA, RU17, VIME, RS17, K2C7, GNAI3, RSSA, LEG1, ROA1, PARP1, PRS56, HS71B, ODP2, THIO, MGST1, CH60, BIP, HSP7C, GTR1, TOP2A, PYC, PABP1, PCNA, ADT3, IMDH2, KCRU, XRCC6, XRCC5, EF2, K1C10, K2C5, PDIA4, PLST, ETFA, MIF, KPYM, ENPL, HNRPL, PLAK, EZRI, NDKA, RS2, DESP, H13, NCPR, AT2A2, DDX5, TCPA, PTN1, ARF4, RL7, RL17, NUCL, GSTM3, FLNA, FBRL, PUR6, UBA1, ROA2, QCR2, SFPQ, PPIB, RS3, SAHH, COF1, MCM3, RS12, ATPA, U2AF2, RL13, S10A4, PTBP1, SYVC, EF1G, STOM, RL10, APEX1, PYR1, CALX, TKT, ERP29, PRDX6, PRDX5, PRDX3, RL12, PDIA3, CPSM, HNRH1, STIP1, L1CAM, PRDX2, P5CR1, DUT, MCM7, GLYM, HSP74, PHB1, RL22, MYH9, SOAT1, DEK, K22E, RL4, LONM, NUP62, GRP75, IF4A3, RL3, RL13A, ARL1, STAT3, MDHM, RFC3, ECHA, SYIC, LAP2A, LPPRC, MATR3, MSH2, GPDM, VDAC2, KI67, BAG6, RL27A, RL5, RS9, STT3A, CAPZB, SYQ, RL29, AT5G3, TCPE, RL34, FAS, TCPG, EFTU, ACADV, TMEDA, NU153, RBP2, CPT1A, SERPH, RL14, TCPQ, TCPD, FXR1, RAB5C, RAB7A, HCFC1, ROA3, 6PGD, HNRPM, IMA1, HNRPF, MSH6, TXTP, ACLY, COPA, MOT1, SYRC, KAD2, P5CS, XPO2, TERA, NP1L1, DSRAD, ATPK, TMM33, TPIS, MYL6, IF4A1, RS20, S10AA, RAP1B, RL15, RL37A, HNRPK, RS8, RS16, 1433E, RS14, RS23, RS11, RUXE, RL7A, RS4X, RS6, H4, RAB1A, RAN, RL23, RS25, RS26, RL10A, RL11, RL8, PPIA, RS27A, RSMN, RACK1, ACTG, UBC9, TBA1B, TBB4B, GTF2I, TCPB, PRKDC, RL24, ARF5, RL19, SRSF3, MPCP, CLH1, HNRPU, SPTB2, EXOSX, RL18A, RL6, IF4G1, K1C17, PRDX1, RL18, C1QBP, KHDR1, DHX9, NCBP1, AHNK, NU160, SF3A3, ILF3, ACACA, PRDX4, CBX3, TIF1B, SPTN1, HNRPD, SAFB2, TTL12, CAPR1, ITPR1, RRP1B, GANAB, LBR, GOGB1, IMB1, NUMA1, SUZ12, U5S1, RRS1, PDIA6, PLEC, TEBP, NONO, PCBP1, PCBP2, DHC24, SF3B3, SF3A1, TRAM1, ELAV1, AAAT, RBBP7, H31T, PDS5A, TSR1, IF2GL, RRP12, NU188, HP1B3, EF1A3, PPR18, PRP8, C1TM, DHX30, CAND1, MISP, SPB1, PELP1, RDH10, CCAR2, TXND5, STT3B, BRX1, PO210, GEMI5, RT27, HS105, GCN1, NU205, AKAP1, AN32B, RBP56, DDX17, FUBP2, TNPO1, UBP7, UTP4, LRC59, PGAM5, FUBP3, MBOA7, MCCA, WRIP1, UHRF1, POP1, HCD2, ROAA, TM9S2, TCPH, ANM1, H2B1L, RNZ2, MEP50, MBB1A, ESYT1, H2AJ, GNL3, HDHD5, GTPB4, API5, RPF2, SFXN1, RDH14, ABCB6, DDX21, MDN1, DCA13, ATD3A, DDX18, MIC19, TEX10, TECR, MYOF, THYN1, HACD3, RRBP1, ABC3B, RLP24, ACINU, OGDHL, COR1C, PRP19, SSRG, TRI33, EIF3L, RUVB1, VDAC3, PDIP2, NOP58, SF3B6, RTCB, RL36, LAS1L, SRPRB, COPG1, MTCH2, CEPT1, ZNT1
Species: Homo sapiens
Download
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical chemistry 2022 94(7) 35132862
Abstract:
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
O-GlcNAc proteins:
RBM47, E2F8, SBNO1, CNOT1, HMX3, ABTB3, RHG32, P121C, PDLI1, SNP23, PSMD9, TAF4, ARI1A, ABLM1, STX16, HGS, MYPT1, SC16A, SR140, SET1A, FYB1, TIF1A, PPM1G, SHIP2, EIF3D, NUP42, KDM6A, TET3, SI1L1, DC1L2, HNRPR, PRPF3, TPD54, E41L2, ZN207, BUB3, AKAP8, ZNRD2, MYPT2, GANP, HNRPQ, DIAP1, PLIN3, MAFK, TBL1X, MITF, N4BP1, ZC11A, T22D2, PP6R2, ANR17, BCAS1, NCOR1, SPAG7, TIPRL, SPF30, TOX4, TOX, PCF11, AGFG2, ZFPL1, KIF4A, SC24A, SC24B, CNOT4, ASML, M4K4, BPNT1, PX11B, CHK2, LMNA, GLPA, TFR1, ALDOA, GCR, HSPB1, GNAI2, RLA1, RLA2, RLA0, K1C18, K2C8, RB, CATD, SYEP, PTPRC, VIME, GSTP1, HMGB1, ROA1, ATX1L, DERPC, ZN865, TPR, LAMP2, EF2, PLSL, PLST, GLU2B, HCLS1, PO2F1, RAC2, ATF2, ZEP1, TFE2, MUC1, CREB1, JUNB, ATF7, PTN2, DDX5, SON, ATF1, CSK22, NFKB1, FLNA, PUR2, RFX1, CBL, COF1, PTBP1, ARNT, DCK, PYR1, MAP4, CALX, 3MG, PRDX6, CDC27, AMRP, CLIP1, ZEP2, HNRH1, 1433S, ELF1, LSP1, PTN7, IRS1, ADDA, NU214, CUX1, TXLNA, MLH1, ECHA, IF2G, HNF4A, LAP2B, GPDM, RANG, KI67, CRKL, CAPZB, RFX5, SOX2, CAMLG, NASP, FAS, CDK8, SRP09, YLPM1, NU153, RBP2, TAF6, EMD, LRBA, PAPOA, HCFC1, HDGF, AGFG1, HNRPF, HXK2, NUP98, ATX1, RD23B, AF10, AF17, DSRAD, FOXA1, HNRH2, NU107, TPIS, PSME3, TPM4, F193A, GTF2I, PHC1, PRKDC, MAP1A, SARNP, FOXK1, FBLN2, FAM3A, EM55, NFKB2, HNRPU, SPTB2, FOXK2, RUNX1, FLI1, SATB1, SP2, MP2K1, NUCB1, KMT2A, IF4G1, TLE3, TLE4, KPCT, PSME1, GABPA, PRDX1, ACK1, AHNK, IFFO1, GALT2, SRBP2, TROAP, BPTF, TP53B, CBX3, NFAC2, PICAL, CUL4B, ASPP2, NFYC, CDK13, VEZF1, UBP2L, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, UBP10, 2A5D, MEF2D, LASP1, NUMA1, CND1, TEBP, PCBP1, RBMS2, SF3A1, TSN, SF01, MED1, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, DPYL2, TAF9, MAPK3, CSPP1, PDS5A, QSER1, AAK1, LRRF1, VP26B, ACSF3, TPRN, CRTC2, PAN3, YIF1B, PRC2B, CEP78, ZN362, FKB15, LRIF1, CAF17, UBAP2, NT5D1, AHDC1, LYRM7, RPRD2, ZN318, TASO2, TBC9B, ARID2, C19L1, ABLM2, TWF2, GRHL2, CPZIP, NIPBL, LIN54, ZCHC8, C2D1A, SCYL2, NFRKB, RSBNL, MDEAS, ZC3HE, LARP1, SAMD1, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NBEL2, CO039, SRCAP, UBN2, TM1L2, ASXL2, SPT6H, MEPCE, BOP, KDM3B, ERMP1, TRM1L, ZCCHV, KANL1, POGZ, ZFY16, NUFP2, MAVS, EMSY, RAI1, I2BP2, SRGP1, RHG30, SH3R1, HUWE1, YTHD3, GALT7, LYRIC, BCL9L, CASZ1, TSYL5, DDX42, CACL1, P66A, I2BP1, VRK3, FOXP4, ARI3B, TEX2, MGAP, ANKH1, SUGP1, MILK2, ERF3B, K2013, PHAR4, XRN1, ZN687, FNBP4, ARFG1, ENAH, NHLC2, AVL9, XXLT1, GOLM1, TXND5, SERB1, CHSTE, SLAI1, TNR6A, PHC3, SP20H, VP37A, KMT2C, ARI1B, KNL1, NEDD1, ALMS1, PREX1, DLG5, GEMI5, PIGO, UBS3B, WIPF2, FRS2, PDC6I, ZFN2B, TPC12, SEN15, PCNP, LMO7, ATX2L, CSKI2, PSPC1, P66B, GBF1, SMG7, RTF1, TOPB1, PHF3, MAML1, TTC9A, PRCC, RREB1, CBP, DDX17, SEM4D, ARHG1, GPKOW, FUBP2, LPP, TTC28, PF21A, FAF2, ESS2, EDC3, A7L3B, P121A, PDLI5, FUBP3, VCIP1, PDLI2, Z512B, ZFR, EP400, PRRC1, NOL4L, RBM14, PURB, NACC1, CIC, MED15, NUDC1, SIN3A, AEDO, MINT, HTF4, CNN2, RGPD5, ATX2, HCD2, S29A1, ARI3A, SH3G1, TRIR, DPH2, MGME1, ERP44, ESYT1, CCM2, CNPY3, WAC, DIDO1, HGH1, MMTA2, PAXX, NTM1A, RBM4, SGPP1, HEMGN, HDHD5, YTHD1, FTO, CEP44, BC11B, PITH1, SP130, BRD8, RGAP1, I2BPL, ADNP, DHX36, FOXP1, CENPH, WNK1, E41L1, ZHX3, YTDC2, RANB3, PHAX, ECT2, CNO10, MLXIP, PKHA5, PKHA1, RC3H2, LY9, RDH14, TAF9B, NCOA5, TANC2, TNR6C, CHD8, SDF2L, ARFG3, UBN1, RTN4, PDLI7, CHSTC, STRN4, PNO1, BMP2K, RBM12, STAU2, TXLNG, PNPO, CARF, TAB2, TMOD3, CDK12, F120A, HPBP1, ITSN2, CNOT2, CHMP5, VAPA, CAMP3, RBM27, KANL3, RERE, ZN219, SE1L1, STAP2, LIMD1, TCF20, SEPT9, UBQL2, TRPS1, S30BP, NRBP, EI2BD, SIX4, APC7, TASOR, GMEB2, PARP4, MA1B1, ACINU, ZHX1, CDV3, MRTFB, ZBT21, YETS2, HECD1, ZMYD8, SCAF8, PP6R1, TRI33, TNR6B, ZC3H4, SHAN2, SRRM2, CTND2, SCML2,