REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation is essential for rapid Pomc expression and cell proliferation in corticotropic tumor cells. Endocrinology 2021 34418053
Abstract:
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients due to profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlates with their onset or severity. Herein, we investigate the impact of the O-GlcNAc post-translational modification in their etiology. Found in over 5000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancers progression and endocrine diseases such as diabetes. In this study, we demonstrate that O-GlcNAcylation enzymes were upregulated, particularly in aggressive ACTH-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we show that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hyper-secretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing's disease, materialized by severe endocrine disruption and increased mortality. We demonstrate that Pomc mRNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By impacting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
O-GlcNAc proteins:
GPTC8, ITB4, PTPRF, VIR, HMCN2, SETX, RTF1, MYH7B, FSIP2, TITIN, ARGAL, CO6A5, MMRN2, STOX1, PLXB2, AGRG4, F25A2, LOXH1, HMCN1, TM233, PIEZ1, TOPZ1, CE350, M3K19, RYR2, ACACB, RN213, CF251, ARHG5, BICRA, FOXM1, DLDH, PEX5, WRN, CELR1, PROM1, STK10, MYPC3, DTNB, IKKB, ACTN3, ALDOC, RPB1, LMNB1, MAP1B, HVM57, PAI1, MCM3, MIS, RGRF1, MSRE, CTND1, RB22A, ZO1, QOR, ANXA5, MSH6, EVC, KCNN2, DEPD5, NOE3, TBB4B, ROCK1, GSH1, G3BP1, ATS1, TBB5, NF1, PGBM, IF2P, FA8, GDF3, KCMA1, ZCH18, TANC1, NSUN7, SHRM4, FAT4, IGFN1, HMHA1, FA98A, SCRN3, CH048, K22E, SHLD2, BIG3, SDK1, BAHC1, SLMAP, TBCD9, RIMB3, DYH12, ITAD, CKAP2, IGS10, A3LT2, ITA1, HERC2, XIRP2, TR150, IQEC2, LRC8B, FAT2, S39AC, VP13A, MTUS1, GSTCD, TENS3, ACACA, UTP20, KLRA4, PAPOA, STAR3, EWS, KTN1, GRID1, DDX5, CP131, SEM3B, TLL1, MINT, CCPG1, BTF3, TPP2, RBL1, COBA2, TASOR, PDS5A, CE290, NAL14, A2MG, ZZZ3, FREM2, CPSF6, RPRD2, HEAT6, P4R3A, FIL1L, SNX6, GAPD1, PTN23, TRI37, MON1A, MSL1, SARM1, CENPE, DAPLE, TIAM2, UBE2O, KDM3B, SYNE1, CMYA5, FHOD3, TBB2A, MYCB2, SGO2, MCAF1, STAR9, CAPS1, PHF8, CUL9, CLAP1, ST18, SGSM2, TAF1, M18BP, UBP2L, FLNB, OFD1, PTHB1, PDK1, TMCO3, NRDC, MARF1, TM87B, UNC80, TCAF1, KTU, UBP43, CAPS2, ZN609, DOCK2, RHG24, NAKD2, LENG8, UFL1, CD158, CLASR, SSPO, SLTM, NAV1, FBX4, RFWD3, MICA3, STAU2, NEIL3, CCD14, DDX18, UBP45, AL1L1, CCD80, TF2H3, FYCO1, HNRPU, DYH5, DHX36, AGRV1, FLNC, REST, NDUS1, CREL1, CELR3, DYST, BRWD1, GOGA2, PDIA6, TM1L1, RT4I1, CSTN3, PRP19, TARA, UBP16, NOG2, MYO7B, BCDO2, RTN4, RRBP1, ZN318, DHX30, MITOS, RBM33, NARF, KLH35, ACSL3, SYRC, C16L2, NBEA, TBB3, XPO4, RBCC1, LRP1B, CAC1F, PRG4, BIR1B, SRCN1, SHRM3, ING1, MACF1, ACL7A, SMK2B, H17B6, RPGR, RHG07, MAST1, ADA11, TIM, PFKAP, IRAG1, DEMA, P2R3D, SETBP, NEK4, PLD1
Species: Mus musculus
Download
Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T, Lin KI. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nature communications 2017 8(1) 29187734
Abstract:
O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) catalyzes O-GlcNAc modification. O-GlcNAcylation is increased after cross-linking of the B-cell receptor (BCR), but the physiological function of this reaction is unknown. Here we show that lack of Ogt in B-cell development not only causes severe defects in the activation of BCR signaling, but also perturbs B-cell homeostasis by enhancing apoptosis of mature B cells, partly as a result of impaired response to B-cell activating factor. O-GlcNAcylation of Lyn at serine 19 is crucial for efficient Lyn activation and Syk interaction in BCR-mediated B-cell activation and expansion. Ogt deficiency in germinal center (GC) B cells also results in enhanced apoptosis of GC B cells and memory B cells in an immune response, consequently causing a reduction of antibody levels. Together, these results demonstrate that B cells rely on O-GlcNAcylation to maintain homeostasis, transduce BCR-mediated activation signals and activate humoral immunity.
O-GlcNAc proteins:
FAIM3, K1109, BCORL, M3K15, KANL3, EXC6B, PLHD1, CTTB2, MYO1E, SCLT1, TAF4B, TCOF, FLOT1, OXLA, HDAC1, SYPL1, SEM4D, MA2B1, PPE2, PLD3, DPOD2, NOCT, HNRH1, API5, DFFA, DHX9, MMP8, DPM1, EIF3D, ESS2, CTNL1, VTI1B, S28A2, FA5, CO4B, IGKC, LAC1, IGHA, IGHDM, HA11, LAMC1, TBA1B, LDHA, HVM51, SPTA1, ZFP1, EGR1, ENPL, RPB1, ITB1, ENV1, 4F2, HS90B, HA2B, HB2A, CD44, BLK, CN37, LAMP2, ZFP37, PTBP1, HB2I, BASI, FAS, EVI2A, MDR1A, BGAL, ITAL, LYN, TLN1, MOES, U2AF2, MAP4, GNA13, RL3, CATG, DPP4, PTN6, HEXA, NKTR, HMGB2, SUH, CEAM1, GTR3, DRG1, RAB5C, CD22, FMR1, VGFR1, GRP75, CAP1, ECI1, FOXK1, STAT1, NKX25, TCPQ, H11, H13, IL12B, CAPZB, RL5, VDR, RET3, ADCY7, VA0D1, AAAT, IMA1, STOM, FUS, NICA, RU2A, EF2, AAAS, RUVB1, ABCE1, DCAF7, HNRPK, 1433G, ACTA, RS6, VATB2, RL23, RL8, PP2BA, RACK1, TBB4B, M4K1, ITPR3, SURF6, ELAV1, EVL, H2B1A, AT8A1, TCPH, TCPB, NXN, TBB5, HNRL2, CREB1, PLAK, 3MG, CO6A1, LG3BP, COE1, CNN2, NSUN2, HMHA1, SNUT2, SMCA4, TPC10, TGRM2, I20L2, LMF1, PUF60, ZSWM8, PRRC1, SC31A, CPZIP, ITAD, ULK4, ITA1, DYHC2, LIN54, JKIP3, GRHL3, MYO1G, SIN3A, IRAG2, SAMH1, KHDR1, LY75, RASA3, NPT2A, CAPR1, ARHG2, PML, IMA5, LAP2B, PRP4B, M4K2, TS101, ARHG1, PLSL, CTNA2, VSX2, CD37, SERA, PCBP2, TIF1B, COCH, NUP62, RALY, UT14A, ARG39, CLH1, ATS16, F120A, NOP58, TEDC2, U520, RRP12, SMHD1, ANO6, TTBK1, CHD4, SARM1, NUP98, RASL2, TNKS1, AT1A2, NFRKB, DDX55, DNA2, H2B1C, CMYA5, GIMA8, CYFP1, SPAG5, HNRPQ, RPF1, MBB1A, PRC2A, ADCY2, MOGS, SDA1, FA98B, WIPI2, TRRAP, XYLT1, WDR82, GNS, ERLN2, S38A9, WASF2, CMC1, NIM1, TBL1R, ZN526, CARF, HES7, UNC80, RBGPR, ECHA, ELMO1, F214B, KMT2C, FLNA, TPC2, RBBP5, POGZ, DOC10, SYFA, SMKZ, COR2A, RBM14, DOCK2, CASP9, RAE1L, NUP88, RPB2, UACA, SYEP, P66A, VPS50, COPA, VWF, TXTP, ZN536, LMBD1, R4RL1, C2D1A, URP2, STX5, GT251, SDHA, PO121, ABLM1, COL12, ALAT1, RORB, PDLI2, ERO1B, CD177, PSPC1, NUP58, STAB2, LRC8C, COX18, MAVS, PLBL1, UN93B, EVI2B, MYH9, ESIP1, VIGLN, PSMD2, HNRL1, CCAR2, SP7, RECQ5, SFXN3, IF4A3, RINI, DDX1, UBAP2, S15A4, DNJC9, MASP2, UXS1, CSCL1, BMP2K, CYRIB, SYDC, C1TC, GLYR1, PDIA6, CIC, S12A6, ATAD3, MYO5A, MCLN1, ABEC3, STML2, SFXN1, PRP19, TARA, MCRS1, RTCB, NDUS5, S12A9, SF3B1, ANR17, NU155, TR34A, BAP1, PRP8, NUDC2, TSN31, RN138, RTRAF, RU2B, YETS4, M2OM, MIC19, SNX2, DDX28, CXXC1, RUSD4, ILF2, CHTOP, LUC7L, DIM1, MCES, SEC13, SP2, NOP56, U2AF1, EF1G, MCEM1, EVPL, PRP4, CMTR1, WWP2, DHB11, PESC, TLR9, IRX6, KRT81, RBP2, AFF4, KAT2B, STK3, NUP50, DDX21, ACINU, SIGIR, ZN207, SLAF1, SON, H2AY, MTA2, SAE1, MYO1C, RUVB2, TRPV2, PFKAP, ARC1B, ASAH1, VAPA, EHD1, IF2G, CLIC1, HNRPC, HNRPF
Species: Mus musculus
Download
Page 1 of 1