REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (9 results)


Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical chemistry 2022 35132862
Abstract:
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
O-GlcNAc proteins:
RBM47, E2F8, SBNO1, CNOT1, HMX3, BTBDB, RHG32, P121C, PDLI1, SNP23, PSMD9, TAF4, ARI1A, ABLM1, STX16, HGS, MYPT1, SC16A, SR140, SET1A, FYB1, TIF1A, PPM1G, SHIP2, EIF3D, NUP42, KDM6A, TET3, SI1L1, DC1L2, HNRPR, PRPF3, TPD54, E41L2, ZN207, BUB3, AKAP8, ZNRD2, MYPT2, GANP, HNRPQ, DIAP1, PLIN3, MAFK, TBL1X, MITF, N4BP1, ZC11A, T22D2, PP6R2, ANR17, BCAS1, NCOR1, SPAG7, TIPRL, SPF30, TOX4, TOX, PCF11, AGFG2, ZFPL1, KIF4A, SC24A, SC24B, CNOT4, ASML, M4K4, BPNT1, PX11B, CHK2, LMNA, GLPA, TFR1, ALDOA, GCR, HSPB1, GNAI2, RLA1, RLA2, RLA0, K1C18, K2C8, RB, CATD, SYEP, PTPRC, VIME, GSTP1, HMGB1, ROA1, ATX1L, DERPC, ZN865, TPR, LAMP2, EF2, PLSL, PLST, GLU2B, HCLS1, PO2F1, RAC2, ATF2, ZEP1, TFE2, MUC1, CREB1, JUNB, ATF7, PTN2, DDX5, SON, ATF1, CSK22, NFKB1, FLNA, PUR2, RFX1, CBL, COF1, PTBP1, ARNT, DCK, PYR1, MAP4, CALX, 3MG, PRDX6, CDC27, AMRP, CLIP1, ZEP2, HNRH1, 1433S, ELF1, LSP1, PTN7, IRS1, ADDA, NU214, CUX1, TXLNA, MLH1, ECHA, IF2G, HNF4A, LAP2B, GPDM, RANG, KI67, CRKL, CAPZB, RFX5, SOX2, CAMLG, NASP, FAS, CDK8, SRP09, YLPM1, NU153, RBP2, TAF6, EMD, LRBA, PAPOA, HCFC1, HDGF, AGFG1, HNRPF, HXK2, NUP98, ATX1, RD23B, AF10, AF17, DSRAD, FOXA1, HNRH2, NU107, TPIS, PSME3, TPM4, F193A, GTF2I, PHC1, PRKDC, MAP1A, SARNP, FOXK1, FBLN2, FAM3A, EM55, NFKB2, HNRPU, SPTB2, FOXK2, RUNX1, FLI1, SATB1, SP2, MP2K1, NUCB1, KMT2A, IF4G1, TLE3, TLE4, KPCT, PSME1, GABPA, PRDX1, ACK1, AHNK, IFFO1, GALT2, SRBP2, TROAP, BPTF, TP53B, CBX3, NFAC2, PICAL, CUL4B, ASPP2, NFYC, CDK13, VEZF1, UBP2L, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, RRP1B, NCOA6, GSE1, UBP10, 2A5D, MEF2D, LASP1, NUMA1, CND1, TEBP, PCBP1, RBMS2, SF3A1, TSN, SF01, MED1, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, DPYL2, TAF9, MAPK3, CSPP1, PDS5A, QSER1, AAK1, LRRF1, VP26B, ACSF3, TPRN, CRTC2, PAN3, YIF1B, PRC2B, CEP78, ZN362, FKB15, LRIF1, CAF17, UBAP2, NT5D1, AHDC1, LYRM7, RPRD2, ZN318, TASO2, TBC9B, ARID2, C19L1, ABLM2, TWF2, GRHL2, CPZIP, NIPBL, LIN54, ZCHC8, C2D1A, SCYL2, NFRKB, RSBNL, MDEAS, ZC3HE, LARP1, SAMD1, FIP1, CRTC3, SAS6, MCAF1, BCOR, GGYF2, NBEL2, CO039, SRCAP, UBN2, TM1L2, ASXL2, SPT6H, MEPCE, BOP, KDM3B, ERMP1, TRM1L, ZCCHV, KANL1, POGZ, ZFY16, NUFP2, MAVS, EMSY, RAI1, I2BP2, SRGP1, RHG30, SH3R1, HUWE1, YTHD3, GALT7, LYRIC, BCL9L, CASZ1, TSYL5, DDX42, CACL1, P66A, I2BP1, VRK3, FOXP4, ARI3B, TEX2, MGAP, ANKH1, SUGP1, MILK2, ERF3B, K2013, PHAR4, XRN1, ZN687, FNBP4, ARFG1, ENAH, NHLC2, AVL9, XXLT1, GOLM1, TXND5, PAIRB, CHSTE, SLAI1, TNR6A, PHC3, SP20H, VP37A, KMT2C, ARI1B, KNL1, NEDD1, ALMS1, PREX1, DLG5, GEMI5, PIGO, UBS3B, WIPF2, FRS2, PDC6I, ZFN2B, TPC12, SEN15, PCNP, LMO7, ATX2L, CSKI2, PSPC1, P66B, GBF1, SMG7, RTF1, TOPB1, PHF3, MAML1, TTC9A, PRCC, RREB1, CBP, DDX17, SEM4D, ARHG1, GPKOW, FUBP2, LPP, TTC28, PF21A, FAF2, ESS2, EDC3, A7L3B, P121A, PDLI5, FUBP3, VCIP1, PDLI2, Z512B, ZFR, EP400, PRRC1, NOL4L, RBM14, PURB, NACC1, CIC, MED15, NUDC1, SIN3A, AEDO, MINT, HTF4, CNN2, RGPD5, ATX2, HCD2, S29A1, ARI3A, SH3G1, TRIR, DPH2, MGME1, ERP44, ESYT1, CCM2, CNPY3, WAC, DIDO1, HGH1, MMTA2, PAXX, NTM1A, RBM4, SGPP1, HEMGN, HDHD5, YTHD1, FTO, CEP44, BC11B, PITH1, SP130, BRD8, RGAP1, I2BPL, ADNP, DHX36, FOXP1, CENPH, WNK1, E41L1, ZHX3, YTDC2, RANB3, PHAX, ECT2, CNO10, MLXIP, PKHA5, PKHA1, RC3H2, LY9, RDH14, TAF9B, NCOA5, TANC2, TNR6C, CHD8, SDF2L, ARFG3, UBN1, RTN4, PDLI7, CHSTC, STRN4, PNO1, BMP2K, RBM12, STAU2, TXLNG, PNPO, CARF, TAB2, TMOD3, CDK12, F120A, HPBP1, ITSN2, CNOT2, CHMP5, VAPA, CAMP3, RBM27, KANL3, RERE, ZN219, SE1L1, STAP2, LIMD1, TCF20, SEPT9, UBQL2, TRPS1, S30BP, NRBP, EI2BD, SIX4, APC7, TASOR, GMEB2, PARP4, MA1B1, ACINU, ZHX1, CDV3, MRTFB, ZBT21, YETS2, HECD1, PKCB1, SCAF8, PP6R1, TRI33, TNR6B, ZC3H4, SHAN2, SRRM2, CTND2, SCML2, ZN148, T3JAM, VDAC3, AKAP2, DDX52, NOP58, GIT1, ZN281, SIT1, SALL2, ARIP4, CRBG1, HYOU1, KLF12, PRC2C, YTHD2, CD2AP, TNPO3, SRPRB, TSSC4, NUBP2, HCFC2, FHOD1, NCOR2, GMEB1, NCOA3, S23IP
Species: Homo sapiens
Download
Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS chemical biology 2022 35254053
Abstract:
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
O-GlcNAc proteins:
A0A0B4J203, A0A0C4DFX4, RBM47, E2F8, WDR27, SBNO1, CNOT1, P121B, P121C, H0YAE9, H0YHG0, H7C469, K7ELQ4, M0QZ24, PDLI1, HAX1, TAF4, BCL9, CAC1A, DDX3X, NFIB, PPP6, MA2B1, ARI1A, SOCS7, ABLM1, KMT2D, GBRD, RGRF2, TX1B3, HGS, MYPT1, SYN3, ZN609, TRI66, PDZD2, MAST4, SC16A, SET1A, CASC3, FOXP2, MOT4, P4HA2, ARPC5, CLOCK, MAFG, PER1, KDM6A, TET3, SI1L1, TGFI1, M3K7, MCA3, PRPF3, TPD54, SYNJ1, IF4G3, E41L2, WIPF1, FOXO3, TGM5, RNF13, SPY2, PLRG1, ZN207, AKAP8, CALU, ORC5, MYPT2, GANP, OGA, CCNT1, BUB1B, PLOD3, PLIN3, MOT2, MAFK, PQBP1, BRD4, TBL1X, PP1RB, NBN, MITF, SRGP2, N4BP1, ROCK2, PP6R2, CNOT3, ANR17, FLNB, NCOR1, SF3B1, REM1, CREG1, CRTAP, SYUG, CYTF, TOX4, TOX, SUN1, PCF11, AGFG2, UBE4B, CAC1H, SVIL, SC24A, SC24B, CNOT4, EYA4, ZMYM6, BAG3, LATS1, DDAH2, TXD12, ONEC2, CLPT1, ABL1, CRYAB, LMNA, TFR1, CATA, GLCM, FUCO, ALDOA, GCR, G3P, CPNS1, HSPB1, RLA2, RLA0, ITB1, K1C18, NPM, CATL1, CATB, MCR, BGLR, ITA5, NFIC, VIME, SNRPA, FGR, ATX1L, DERPC, ZN865, GLI2, MYBB, CLUS, PPAL, MPRI, PABP1, TPR, BMP3, SKIL, ENPL, PO2F1, PLAK, ATF2, ZEP1, RS2, TFE2, F261, ITB4, ZNF23, ZNF25, JUNB, ATF7, TPH1, DDX5, EGR1, SON, NELFE, ATF1, ATF6A, CADH2, ICAL, CSRP1, FLNA, RFX1, CBL, SFPQ, COF1, IF4B, GATA2, APC, DDX6, ARNT, MAP4, LYOX, HXD9, MZF1, CLIP1, 5HT1F, HXA11, ZEP2, ELF1, CTNB1, FBN1, ADDA, BASI, NU214, VGFR2, SRP14, NUP62, SYUA, VATA, CUX1, TXLNA, STAT3, LAP2A, EPS15, HELZ, MATR3, SSRA, SSRB, KI67, ATRX, MAP1B, YAP1, UTRN, STT3A, SC6A8, RFX5, SOX2, PRC2A, HSP13, NR2C2, NASP, CDK8, DHE4, YLPM1, NU153, RBP2, TAF6, MRE11, EMD, MXI1, MAP2, TOB1, PPT1, TCPQ, PAPOA, HCFC1, GDS1, AGFG1, CRIP2, NUP98, SMTN, SC24C, HIRA, ATX1, ATN1, AFAD, AF10, AF17, DSRAD, SEC13, NU107, ZN445, CSN2, RL37, WDR5, TIM10, F193A, RBM6, PITX1, IF4G2, PHC1, ADA17, KGD4, RL19, FOXK1, DAB2, RHG04, RBM10, HNRPU, SPTB2, FOXK2, RUNX1, MEF2A, SP2, SP3, PLOD1, KMT2A, TF65, IF4G1, NOTC2, TLE3, TLE4, PTN12, CALD1, MEF2C, P5F1B, GABPA, ZO1, ACK1, EP300, AHNK, FCHO2, HMGX3, SRBP2, FOXO1, ASPH, TROAP, BPTF, FSTL1, NFIA, DPYD, TP53B, FOXC1, ECH1, ROA0, DDX10, TBX2, GPS2, G3BP1, PABP4, ADAM9, PICAL, NAB1, SERC3, RIPK1, IQGA2, STIM1, CUL4B, ASPP2, CAC1S, RUNX2, NFYC, CDK13, TOB2, VEZF1, UBP2L, GIT2, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, TTLL4, RRP1B, NCOA6, GSE1, MEF2D, LASP1, MYPC3, ZN638, NUMA1, SART3, CND1, R3HD1, KIF14, WDR43, PLCL1, PLEC, NOMO1, NONO, RCN1, RYR3, KS6A1, RBMS2, TAF1C, SF01, MED1, JHD2C, TRIP6, T22D1, ELF2, TAB1, HERC1, NCOA1, VAS1, ZFHX3, ZYX, ADRM1, SYPL1, TAF9, DREB, DGKD, CGT, GEN, LY6K, RFX7, QSER1, AAK1, PRSR3, QRIC1, MA7D1, WDR72, TBRG1, TB10B, TPRN, FIL1L, SVEP1, AMOT, EPC2, CRTC2, PAN3, HS904, YIF1B, AG10A, IGS11, ZN628, BCORL, FIGN, K2026, SH319, TGO1, PRC2B, TOIP1, CEP78, P4R3B, HP1B3, CE170, ZN362, FKB15, AKND1, ZEP3, LRIF1, SWT1, RHG21, UBAP2, RBM26, DEP1A, OGRL1, AHDC1, F222A, RPRD2, RN220, ZN318, TASO2, ZMYM4, PAPD7, TNS2, KANK2, ARID2, USF3, RHG17, CYTSA, ANR40, BICRL, JADE1, PKHA7, NIPBL, LIN54, TET2, RINT1, CRCDL, ZNT6, TTC41, RHGBA, NFRKB, RSBNL, KCD18, NCEH1, MDEAS, ZC3HE, LARP1, NHS, CRTC3, SAS6, MCAF1, BCOR, MPRIP, DNMBP, GGYF2, THADA, BNC2, NFXL1, NBEL2, CO039, SRCAP, CBAR2, UBN2, XIRP1, RAPH1, LARP4, HAKAI, ASXL2, SPT6H, KDM3B, ZCCHV, KANL1, RGPD4, POGZ, ZFY16, NUFP2, MAVS, CLAP1, EMSY, I2BP2, SRGP1, RBBP6, SH3R1, HUWE1, YTHD3, NPM2, ILDR1, KAISO, MYPN, LDB1, LYRIC, BCL9L, LUZP1, NRAP, RTTN, PRSR1, DDX42, CEP57, CD20B, CACL1, P66A, HIPK1, KCC1D, RN135, MY18B, AHNK2, FOXP4, NAV3, NAV2, MISP, ARI3B, IPRI, TEX2, MGAP, CC28A, Z3H7A, ANKH1, SUGP1, RPAP2, MILK2, SRRM1, ZZZ3, FA71A, PHAR4, RTKN2, DCP1B, XRN1, PELP1, CKLF8, TENS4, SPART, RPTOR, NUP93, ZN687, DOCK4, RHG24, RUSC2, SYNPO, FNBP4, D2HDH, RP25L, ATPF2, CPSF7, ARFG1, ENAH, SPOT1, SUMF1, KCNH5, SLAI1, TNR6A, PHC3, DRC6, CBPC3, NAV1, VP37A, KMT2C, ZMIZ2, BD1L1, ARI1B, FLCN, NUP35, TOIP2, TNIP2, KNL1, OR2L2, PUM2, CC110, TBC15, STT3B, ZN507, ALMS1, DLG5, KCNV2, BRX1, DOT1L, GEMI5, PARD3, ZN384, SMAP2, IASPP, TM263, ZFN2B, NUDC2, PCNP, TRUB1, LMO7, ATX2L, PALLD, P66B, BBX, ZCH14, GBF1, SMG7, RTF1, NICA, PHF3, MAML1, ZN592, LAR4B, TFG, TAF4B, RREB1, SC65, CBP, SYMPK, DDX17, GPKOW, FUBP2, UBP7, LPP, LSM10, NCLN, MRTFA, FUBP1, TTC17, PBIP1, TTC28, TOM6, PF21A, INT12, REPS1, ESS2, MBD6, ELP4, SGF29, RBM33, ZN503, P121A, TONSL, PDLI5, ERO1A, DOCK6, FUBP3, RSRC1, ZN594, VCIP1, ZN462, LCOR, PDLI2, CLP1L, Z512B, ZFR, EP400, MRFL, H6ST2, TIGD1, NOL4L, DOCK7, RPR1A, RBM14, ADCYA, QKI, LENG8, TRNT1, PP1RA, PHF12, CIC, MED15, ERBIN, HMCN1, LMF1, PIGS, WRIP1, SIN3A, MINT, HTF4, EYA3, POP1, TEAD3, TTC1, CSN8, ATX2, ARI3A, ANM1, PKP2, TEP1, DPH2, WAC, DIDO1, HNRL1, RBM4, SSBP4, PRR14, SSBP3, YTHD1, KPCD2, ZCHC2, TB182, AMRA1, CE295, TANC1, ZC12C, CEP44, STRAB, SP130, BRD8, RGAP1, SMG9, APC1, I2BPL, TMX4, KI13A, WDR13, EPC1, ADNP, ZN106, TM245, FOXP1, PABP3, WNK1, E41L1, ZHX3, BICC1, PEAK1, PPR3E, ZN703, PKHA5, CLSPN, BCDO1, RC3H2, ZFYV1, TAF9B, EMAL4, ZBT20, NCOA5, TANC2, ZN532, NCK5L, TNR6C, CHD8, FBSL, APMAP, DMAP1, UBN1, DCP1A, INCE, ANLN, GEPH, PDLI7, TULP4, HOME2, SLX9, DIAP3, BMP2K, RBM12, STAU2, DDX28, CWC25, CARF, ETAA1, ABI2, HXC10, BCLF1, TAB2, CELR3, CDK12, GRHL1, SACS, ITSN2, BICRA, CNOT2, TMEM9, CAC1I, CAMP3, DAPLE, RCC2, DIP2B, MBD5, CT2NL, F135A, KANL3, RERE, SE1L1, TRM7, YM012, KDM5B, LIMD1, TCF20, SUN2, LIMA1, SEPT9, UBQL2, TRPS1, S30BP, NRBP, BAZ2B, SIX4, HOOK1, CDC23, TASOR, GMEB2, TNIK, PARP4, NUP50, ZHX1, CDV3, MCTS1, KCNH3, LRFN2, MRTFB, ZBT21, PRR12, YETS2, HECD1, PKCB1, NOTC3, SPAT2, SOX13, G3BP2, MAGD2, MINP1, MACF1, CP131, SCAF8, TRI33, PHF8, LIMC1, TNR6B, SRRM2, SCML2, ZN148, POLH, INVS, ICE1, R3HD2, MAN1, TR150, WBP11, ZN281, STA13, WNK2, HBS1L, ARIP4, MTCL1, DCAF1, RPGF2, IRS2, CRBG1, HYOU1, SAM50, PRC2C, YTHD2, NCOR2, GMEB1, DC1L1, EPN1, NCOA3, ZHX2, S23IP, U3KPZ7, V9GYH0
Species: Homo sapiens
Download
Xu S, Sun F, Wu R. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Analytical chemistry 2020 92(14) 32574038
Abstract:
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.
O-GlcNAc proteins:
SBNO1, CNOT1, SWAHB, P121C, PDLI1, TAF4, RNT2, PODXL, KMT2D, MYPT1, ZN609, SC16A, SET1A, ZN185, TNC18, PRPF3, TPD54, SYNJ1, PLIN3, MAFK, BRD4, N4BP1, ICOSL, ANR17, ZN217, NCOR1, ATRN, TOX4, ERLN2, AGFG2, VAPB, SC24A, SC24B, CNOT4, BAG3, LMNA, GCR, HSPB1, IF2A, K1C18, K2C8, K1C19, ROA1, TACD2, ATX1L, LYAG, PPAL, TPR, K1C13, ZEP1, SDC1, ATF1, CBL, GATA3, ARNT, MAP4, CLIP1, HXC9, NU214, MP2K2, CUX1, PBX2, MLH1, STAT3, LAP2A, KI67, RFX5, SOX2, NU153, RBP2, TAF6, HCFC1, AFF3, AGFG1, ATX1, AF17, DSRAD, FOXA1, NU107, FOXK1, SPTB2, TFAP4, EWS, SP2, KMT2A, IF4G1, NOTC2, TLE3, TLE4, REL, ACK1, LG3BP, AHNK, ARHG5, FOXO1, BPTF, RIPK1, NFYC, CDK13, UBP2L, LAGE3, MDC1, EPN4, RRP1B, NCOA6, GSE1, MEF2D, NUMA1, R3HD1, JHD2C, TRIP6, ELF2, TAB1, ZFHX3, ZYX, ADRM1, TAF9, RFX7, QSER1, QRIC1, TB10B, CRTC2, PRC2B, ZN362, UBAP2, RPRD2, ZN318, TASO2, ARID2, ANR40, BICRL, ABLM2, GRHL2, NIPBL, LIN54, TET2, NFRKB, KCD18, MDEAS, ZC3HE, FIP1, SAS6, MCAF1, BCOR, HAKAI, SPT6H, KDM3B, POGZ, MAVS, EMSY, RAI1, SRGP1, SH3R1, YTHD3, CASZ1, P66A, I2BP1, RB6I2, FOXP4, NAV2, GID4, MGAP, CDAN1, SUGP1, MILK2, NUP93, ZN687, FNBP4, ARFG1, ENAH, PHC3, SP20H, KMT2C, STT3B, DLG5, WIPF2, ZFN2B, LMO7, ATX2L, CSKI2, P66B, SMG7, CBP, SEM4D, FUBP2, LPP, PF21A, INT12, CERS2, GWL, PDLI5, CHAP1, ANCHR, Z512B, ZFR, EP400, RBM14, CIC, MINT, S29A1, DPH2, WAC, DIDO1, HNRL1, YTHD1, CEP44, SP130, I2BPL, FOXP1, WNK1, E41L1, ZHX3, GORS2, PKHA5, RC3H2, TAF9B, NCOA5, TANC2, CELR2, UBN1, PDLI7, RBM12, CARF, TAB2, CNOT2, KANL3, STAP2, TCF20, UBQL2, S30BP, SIX4, TASOR, GMEB2, ZHX1, YETS2, PKCB1, NOTC3, TRI33, SRRM2, CHM2B, SCML2, POLH, R3HD2, ZN281, WNK2, PRC2C, NCOR2, GMEB1, ZHX2
Species: Homo sapiens
Download
Hao Y, Fan X, Shi Y, Zhang C, Sun DE, Qin K, Qin W, Zhou W, Chen X. Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nature communications 2019 10(1) 31492838
Abstract:
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG.