REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (4 results)


Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS chemical biology 2022 17(3) 35254053
Abstract:
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
O-GlcNAc proteins:
A0A0B4J203, A0A0C4DFX4, RBM47, E2F8, WDR27, SBNO1, CNOT1, P121B, P121C, H0YAE9, H0YHG0, H7C469, K7ELQ4, M0QZ24, PDLI1, HAX1, TAF4, BCL9, CAC1A, DDX3X, NFIB, PPP6, MA2B1, ARI1A, SOCS7, ABLM1, KMT2D, GBRD, RGRF2, TX1B3, HGS, MYPT1, SYN3, ZN609, TRI66, PDZD2, MAST4, SC16A, SET1A, CASC3, FOXP2, MOT4, P4HA2, ARPC5, CLOCK, MAFG, PER1, KDM6A, TET3, SI1L1, TGFI1, M3K7, MCA3, PRPF3, TPD54, SYNJ1, IF4G3, E41L2, WIPF1, FOXO3, TGM5, RNF13, SPY2, PLRG1, ZN207, AKAP8, CALU, ORC5, MYPT2, GANP, OGA, CCNT1, BUB1B, PLOD3, PLIN3, MOT2, MAFK, PQBP1, BRD4, TBL1X, PP1RB, NBN, MITF, SRGP2, N4BP1, ROCK2, PP6R2, CNOT3, ANR17, FLNB, NCOR1, SF3B1, REM1, CREG1, CRTAP, SYUG, CYTF, TOX4, TOX, SUN1, PCF11, AGFG2, UBE4B, CAC1H, SVIL, SC24A, SC24B, CNOT4, EYA4, ZMYM6, BAG3, LATS1, DDAH2, TXD12, ONEC2, CLPT1, ABL1, CRYAB, LMNA, TFR1, CATA, GBA1, FUCO, ALDOA, GCR, G3P, CPNS1, HSPB1, RLA2, RLA0, ITB1, K1C18, NPM, CATL1, CATB, MCR, BGLR, ITA5, NFIC, VIME, SNRPA, FGR, ATX1L, DERPC, ZN865, GLI2, MYBB, CLUS, PPAL, MPRI, PABP1, TPR, BMP3, SKIL, ENPL, PO2F1, PLAK, ATF2, ZEP1, RS2, TFE2, F261, ITB4, ZNF23, ZNF25, JUNB, ATF7, TPH1, DDX5, EGR1, SON, NELFE, ATF1, ATF6A, CADH2, ICAL, CSRP1, FLNA, RFX1, CBL, SFPQ, COF1, IF4B, GATA2, APC, DDX6, ARNT, MAP4, LYOX, HXD9, MZF1, CLIP1, 5HT1F, HXA11, ZEP2, ELF1, CTNB1, FBN1, ADDA, BASI, NU214, VGFR2, SRP14, NUP62, SYUA, VATA, CUX1, TXLNA, STAT3, LAP2A, EPS15, HELZ, MATR3, SSRA, SSRB, KI67, ATRX, MAP1B, YAP1, UTRN, STT3A, SC6A8, RFX5, SOX2, PRC2A, HSP13, NR2C2, NASP, CDK8, DHE4, YLPM1, NU153, RBP2, TAF6, MRE11, EMD, MXI1, MAP2, TOB1, PPT1, TCPQ, PAPOA, HCFC1, GDS1, AGFG1, CRIP2, NUP98, SMTN, SC24C, HIRA, ATX1, ATN1, AFAD, AF10, AF17, DSRAD, SEC13, NU107, ZN445, CSN2, RL37, WDR5, TIM10, F193A, RBM6, PITX1, IF4G2, PHC1, ADA17, KGD4, RL19, FOXK1, DAB2, RHG04, RBM10, HNRPU, SPTB2, FOXK2, RUNX1, MEF2A, SP2, SP3, PLOD1, KMT2A, TF65, IF4G1, NOTC2, TLE3, TLE4, PTN12, CALD1, MEF2C, P5F1B, GABPA, ZO1, ACK1, EP300, AHNK, FCHO2, HMGX3, SRBP2, FOXO1, ASPH, TROAP, BPTF, FSTL1, NFIA, DPYD, TP53B, FOXC1, ECH1, ROA0, DDX10, TBX2, GPS2, G3BP1, PABP4, ADAM9, PICAL, NAB1, SERC3, RIPK1, IQGA2, STIM1, CUL4B, ASPP2, CAC1S, RUNX2, NFYC, CDK13, TOB2, VEZF1, UBP2L, GIT2, SRC8, CAPR1, LAGE3, PUM1, MDC1, EPN4, TTLL4, RRP1B, NCOA6, GSE1, MEF2D, LASP1, MYPC3, ZN638, NUMA1, SART3, CND1, R3HD1, KIF14, WDR43, PLCL1, PLEC, NOMO1, NONO, RCN1, RYR3, KS6A1, RBMS2, TAF1C, SF01, MED1, JHD2C, TRIP6, T22D1, ELF2, TAB1, HERC1, NCOA1, VAS1, ZFHX3, ZYX, ADRM1, SYPL1, TAF9, DREB, DGKD, CGT, GEN, LY6K, RFX7, QSER1, AAK1, PRSR3, QRIC1, MA7D1, WDR72, TBRG1, TB10B, TPRN, FIL1L, SVEP1, AMOT, EPC2, CRTC2, PAN3, HS904, YIF1B, AG10A, IGS11, ZN628, BCORL, FIGN, K2026, SH319, TGO1, PRC2B, TOIP1, CEP78, P4R3B, HP1B3, CE170, ZN362, FKB15, AKND1, ZEP3, LRIF1, SWT1, RHG21, UBAP2, RBM26, DEP1A, OGRL1, AHDC1, F222A, RPRD2, RN220, ZN318, TASO2, ZMYM4, PAPD7, TENS2, KANK2, ARID2, USF3, RHG17, CYTSA, ANR40, BICRL, JADE1, PKHA7, NIPBL, LIN54, TET2, RINT1, CRCDL, ZNT6, TTC41, RHGBA, NFRKB, RSBNL, KCD18, NCEH1, MDEAS, ZC3HE, LARP1, NHS, CRTC3, SAS6, MCAF1, BCOR, MPRIP, DNMBP, GGYF2, THADA, BNC2, NFXL1, NBEL2, CO039, SRCAP, CBAR2, UBN2, XIRP1, RAPH1, LARP4, HAKAI, ASXL2, SPT6H, KDM3B, ZCCHV, KANL1, RGPD4, POGZ, ZFY16, NUFP2, MAVS, CLAP1, EMSY, I2BP2, SRGP1, RBBP6, SH3R1, HUWE1, YTHD3, NPM2, ILDR1, KAISO, MYPN, LDB1, LYRIC, BCL9L, LUZP1, NRAP, RTTN, PRSR1, DDX42, CEP57, CD20B, CACL1, P66A, HIPK1, KCC1D, RN135, MY18B, AHNK2, FOXP4, NAV3, NAV2, MISP, ARI3B, IPRI, TEX2, MGAP, CC28A, Z3H7A, ANKH1, SUGP1, RPAP2, MILK2, SRRM1, ZZZ3, GAR4, PHAR4, RTKN2, DCP1B, XRN1, PELP1, CKLF8, TENS4, SPART, RPTOR, NUP93, ZN687, DOCK4, RHG24, RUSC2, SYNPO, FNBP4, D2HDH, RP25L, ATPF2, CPSF7, ARFG1, ENAH, SPOT1, SUMF1, KCNH5, SLAI1, TNR6A, PHC3, DRC6, CBPC3, NAV1, VP37A, KMT2C, ZMIZ2, BD1L1, ARI1B, FLCN, NUP35, TOIP2, TNIP2, KNL1, OR2L2, PUM2, CC110, TBC15, STT3B, ZN507, ALMS1, DLG5, KCNV2, BRX1, DOT1L, GEMI5, PARD3, ZN384, SMAP2, IASPP, TM263, ZFN2B, NUDC2, PCNP, TRUB1, LMO7, ATX2L, PALLD, P66B, BBX, ZCH14, GBF1, SMG7, RTF1, NICA, PHF3, MAML1, ZN592, LAR4B, TFG, TAF4B, RREB1, SC65, CBP, SYMPK, DDX17, GPKOW, FUBP2, UBP7, LPP, LSM10, NCLN, MRTFA, FUBP1, TTC17, PBIP1, TTC28, TOM6, PF21A, INT12, REPS1, ESS2, MBD6, ELP4, SGF29, RBM33, ZN503, P121A, TONSL, PDLI5, ERO1A, DOCK6, FUBP3, RSRC1, ZN594, VCIP1, ZN462, LCOR, PDLI2, CLP1L, Z512B, ZFR, EP400, MRFL, H6ST2, TIGD1, NOL4L, DOCK7, RPR1A, RBM14, ADCYA, QKI, LENG8, TRNT1, PP1RA, PHF12, CIC, MED15, ERBIN, HMCN1, LMF1, PIGS, WRIP1, SIN3A, MINT, HTF4, EYA3, POP1, TEAD3, TTC1, CSN8, ATX2, ARI3A, ANM1, PKP2, TEP1, DPH2, WAC, DIDO1, HNRL1, RBM4, SSBP4, PRR14, SSBP3, YTHD1, KPCD2, ZCHC2, TB182, AMRA1, CE295, TANC1, ZC12C, CEP44, STRAB, SP130, BRD8, RGAP1, SMG9, APC1, I2BPL, TMX4, KI13A, WDR13, EPC1, ADNP, ZN106, TM245, FOXP1, PABP3, WNK1, E41L1, ZHX3, BICC1, PEAK1, PPR3E, ZN703, PKHA5, CLSPN, BCDO1, RC3H2, ZFYV1, TAF9B, EMAL4, ZBT20, NCOA5, TANC2, ZN532, NCK5L, TNR6C, CHD8, FBSL, APMAP, DMAP1, UBN1, DCP1A, INCE, ANLN, GEPH, PDLI7, TULP4, HOME2, SLX9, DIAP3, BMP2K, RBM12, STAU2, DDX28, CWC25, CARF, ETAA1, ABI2, HXC10, BCLF1, TAB2, CELR3, CDK12, GRHL1, SACS, ITSN2, BICRA, CNOT2, TMEM9, CAC1I, CAMP3, DAPLE, RCC2, DIP2B, MBD5, CT2NL, F135A, KANL3, RERE, SE1L1, TRM7, YM012, KDM5B, LIMD1, TCF20, SUN2, LIMA1, SEPT9, UBQL2, TRPS1, S30BP, NRBP, BAZ2B, SIX4, HOOK1, CDC23, TASOR, GMEB2, TNIK, PARP4, NUP50, ZHX1, CDV3, MCTS1, KCNH3, LRFN2, MRTFB, ZBT21, PRR12, YETS2, HECD1, ZMYD8, NOTC3, SPAT2, SOX13, G3BP2, MAGD2, MINP1, MACF1, CP131, SCAF8, TRI33, PHF8, LIMC1, TNR6B, SRRM2, SCML2, ZN148, POLH, INVS, ICE1, R3HD2, MAN1, TR150, WBP11, ZN281, STA13, WNK2, HBS1L, ARIP4, MTCL1, DCAF1, RPGF2, IRS2, CRBG1, HYOU1, SAM50, PRC2C, YTHD2, NCOR2, GMEB1, DC1L1, EPN1, NCOA3, ZHX2, S23IP, U3KPZ7, V9GYH0
Species: Homo sapiens
Download
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O'Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS chemical biology 2020 15(4) 32119511
Abstract:
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.