REFERENCES



Choose an author or browse all
Choose the species or browse all
Choose a criteria for sorting
 Reverse sorting
Search for a protein
Search for a single PMID
Select O-GlcNAc references filter

Click to expand (2 results)


Yu SB, Wang H, Sanchez RG, Carlson NM, Nguyen K, Zhang A, Papich ZD, Abushawish AA, Whiddon Z, Matysik W, Zhang J, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Myers SA, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. Developmental cell 2024 38843836
Abstract:
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
O-GlcNAc proteins:
A0A096MIX2, A0A0G2JUA5, IQEC1, A0A0G2JUI5, A0A0G2JUT7, A0A0G2JVC2, A0A0G2JVU1, A0A0G2JVW3, A0A0G2JVZ6, A0A0G2JW69, A0A0G2JWG6, A0A0G2JWK6, A0A0G2JXD0, A0A0G2JXD6, A0A0G2JXE4, TRI46, A0A0G2JXZ9, A0A0G2JY48, A0A0G2JY73, A0A0G2JYE0, A0A0G2JYI7, A0A0G2JYU3, A0A0G2JZ52, A0A0G2JZ94, A0A0G2JZA1, A0A0G2JZA7, A0A0G2JZB7, A0A0G2JZH9, A0A0G2JZX5, A0A0G2K0W3, ABCA3, A0A0G2K2B5, A0A0G2K2Y2, A0A0G2K315, A0A0G2K3H2, A0A0G2K459, A0A0G2K490, A0A0G2K548, A0A0G2K5E4, A0A0G2K5L1, GHC1, A0A0G2K618, A0A0G2K654, A0A0G2K6F2, A0A0G2K6T9, A0A0G2K719, A0A0G2K782, A0A0G2K7L2, A0A0G2K7P9, A0A0G2K847, A0A0G2K8I5, A0A0G2K8S6, A0A0G2K929, A0A0G2K999, A0A0G2K9J0, A0A0G2KAE2, A0A0G2KBB9, A0A0H2UHM7, A0A0U1RS25, A0A140TAA1, NUMBL, PBIP1, A5I9F0, ROA2, H2AJ, B0BN30, B0BNK1, LRFN3, B0K026, FLRT3, B1H2A6, B1WC18, ACAD9, BRSK1, B2GUY8, B2GV74, PTPRE, B2RYB1, B2RYC9, B2RYD7, CTL2, B5DEJ9, TTC17, B5DEZ8, SNPH, B5DFC3, D3Z981, D3Z9D0, D3Z9L0, D3ZA31, ATPK, D3ZAG0, LRRT3, D3ZB81, D3ZBM3, D3ZC55, D3ZC56, D3ZC81, D3ZCT7, D3ZD23, D3ZD73, D3ZDX5, D3ZE26, D3ZEH1, SIDT2, D3ZEI4, D3ZEK5, D3ZES7, D3ZFQ8, D3ZFT1, D3ZG43, D3ZH14, D3ZH36, D3ZH41, D3ZHA1, D3ZHG3, D3ZHL1, MACF1, D3ZK41, D3ZKV7, D3ZLE2, D3ZMJ7, D3ZN27, HCFC1, D3ZN99, D3ZPJ0, D3ZPN0, PLXA3, D3ZQ57, TRIM2, D3ZQM3, D3ZQN7, D3ZRH1, D3ZRN3, D3ZSY8, D3ZT20, D3ZT36, D3ZT47, D3ZTG3, D3ZTL0, D3ZTW6, D3ZU13, D3ZUJ8, D3ZUM4, D3ZUY8, D3ZW09, D3ZW15, D3ZW19, D3ZWP6, D3ZWQ0, D3ZXQ2, D3ZXX3, D3ZYD7, D3ZYM4, D3ZYR4, D3ZYS7, D3ZZK3, D3ZZU4, D4A062, D4A0A1, D4A1G8, LRFN5, D4A2H4, D4A2I9, D4A2Q3, D4A3H5, D4A3L3, D4A3N4, D4A435, D4A507, D4A517, D4A567, D4A5F1, D4A5I4, D4A5X7, D4A604, D4A628, D4A644, LRRT1, D4A6G2, D4A6H8, MGLYR, D4A6T9, D4A732, D4A758, D4A7M0, D4A7Y4, D4A831, D4A833, D4A885, D4A8N1, D4A9F4, D4A9U6, D4AA63, D4AA77, D4ABA9, D4ABI7, LRFN4, D4ACK1, PCD16, D4AD89, D4ADS4, D4ADU2, D4AE63, D4AEB3, E9PT51, E9PT53, E9PT92, E9PTA4, E9PTR4, F1LM47, F1LMW0, F1LNL3, F1LP13, F1LPD7, F1LPJ1, F1LPV0, F1LR12, F1LS01, F1LT36, F1LUC0, F1LUT4, F1LUZ4, F1LV44, F1LVL5, S2512, F1LXC7, F1LXD6, F1LYJ8, FARP1, F1LZ38, F1LZB7, F1M049, F1M1E4, F1M2D4, F1M2E9, F1M2K6, F1M3H3, F1M3J7, F1M3P6, F1M3T8, F1M4B6, F1M4J1, F1M5G8, F1M6P8, F1M853, F1M8K0, F1M949, F1MA42, F1MA97, F1MAK3, F1MAP4, F1MAS4, F7EL93, F7EYB9, F7F3I7, G3V667, G3V6K6, G3V6N7, G3V6U3, G3V728, G3V765, G3V7D4, G3V7K5, G3V7N0, G3V7V3, G3V824, G3V881, G3V886, G3V8D0, LRP1, PGLT1, M0R4G0, M0R557, RN157, M0R5P8, M0R5T4, M0R6E0, M0R715, M0R757, M0R7B4, M0R868, M0R9U3, M0RAP5, M0RB22, M0RC17, M0RDA4, MARK1, MARK2, SYT11, DCLK1, CD166, CTND2, NRP2, ACSL4, NPTXR, ENTP2, C1QBP, DNJA2, PICAL, SEM6B, TRIM3, ANK3, CELR3, SLIT1, SLIT3, VKGC, PACS1, BSN, GABR2, PTN23, AGRL1, AGRL2, CATB, OX2G, ROA1, ENOA, G3P, GNAI2, AT1A1, AT1A2, AT1A3, BIP, GDN, RPN1, AT1B1, CPSM, SYPH, KCC2B, SYN1, MAP1S, LRFN1, LRC4B, ATPB, KCC2A, CLH1, AT2B1, AT2B2, AT2A2, KCC2G, SUCA, RS14, NCAM1, AT1B2, PRIO, LAMP1, INSR, MTAP2, MAP1B, GBRB1, KCC2D, H14, ATPA, S25A3, SPTN1, ABCD3, LAMP2, RL9, RL35, THIL, GSK3B, RL27A, AP2A2, GBRG2, CSK21, GRIA1, GRIA2, GRIA3, GRIA4, AT5F1, NFL, GNAZ, RLA0, GBRA5, GBRA3, CNR1, PPAL, PGFRA, EDNRB, SYT1, PERI, AINX, GBRA2, RL17, RS5, IGF1R, CATD, AKAP5, EAA1, RPN2, VPP1, AGRIN, KAPCA, RS2, DCTN1, TCPA, SC6A9, BDH, RS9, SERPH, ITPR1, PLEC, PFKAL, VIME, ATP5H, GRM2, GRM3, GRM4, GRM5, EAA2, S6A11, EZRI, TXTP, CPT1A, QCR2, HS90B, MAP1A, GRM7, ATPG, NMDZ1, DYHC1, MPC2, ANPRC, GRIK2, GRIK3, DPP6, GFAP, PFKAM, PFKAP, SYT5, DPYL2, NPTX1, S1PR1, GRP75, ITB1, RS3A, AP1B1, MOT1, P4HA1, CACB1, CA2D1, GBB2, AT12A, EPHA5, NCAN, PGCB, OGT1, IDHP, GNAO, ACTB, ARF3, STXB1, HNRPK, 1433G, RS7, PP1B, RS16, 1433E, RS23, RS13, RS11, EF1A1, RS4X, RL23A, RS6, H4, GBRA1, RAN, RL23, RS24, RS3, RL32, RL11, AP2B1, RS27A, RL40, HSP7C, CYH2, DNJA1, GBRB3, GBRB2, ACTC, TBA1A, NEUA, TBB5, APC, MFGM, NUP54, FOLH1, IF2G, RL24, ENPP5, AP2M1, H33, RMXRL, STIM1, TBB2A, MDGA1, EFTU, PURA, MET, CNTN5, NPTN, GPAT1, NEO1, LCAP, KC1A, NFASC, NRCAM, M2OM, SHPS1, CD47, CNTP1, S27A1, DHB4, CSPG4, NMDE2, CAC1B, SV2A, PTPRA, NTRK3, TENR, L1CAM, ADT1, KC1D, ATPO, TGFB2, NRX3A, CAC1E, ADT2, MYPT1, ADA10, K2C8, Q14U74, KINH, Q32KJ5, MIC60, ATAD3, TBB2B, LONP2, AMZ2, LRFN2, Q498C9, DJC10, CARM1, K2C6A, TBB3, MACOI, S39A6, RBMX, Q4V8H7, LRC8A, Q505J7, SYFA, S2551, ZFR, PGAM5, Q566E4, NOE2, NDUA9, ARHG2, PLD3, NONO, FA98A, RM16, CAPR1, DCLK2, PMGT2, NSDHL, ITM2C, LRC59, DRS7B, Q5RK08, Q5U2P5, Q5U302, LRC8D, KIF2B, Q5XIA6, ECSIT, TBA4A, Q5XIH3, EPDR1, TMX2, MGRN1, ECHB, NOE1, GSLG1, NMDE4, PTPRZ, SYT7, KC1G3, FPRP, Q62797, CNTN4, GGH, NLGN2, NLGN3, NELL2, DPYL1, DPYL3, ERBB4, SCNAA, CAMKV, Q63116, CNTN1, GRIK5, PHLB1, MYO9B, NRX1A, NRX2A, MAP6, NTRK2, HYOU1, S12A5, SFXN1, OST48, NDUS2, DDX1, TECR, ECHA, AT1A4, AT2B4, PTPRF, PTPRS, PACC1, FACR1, C2D1A, ENPL, NDUS1, S12A9, TBA3, SIR5, SIAT9, HEXB, Q6AY21, SCPDL, Q6AYI1, Q6AYM8, RTCB, ABD12, K1C15, K1C10, K2C4, K2C1B, K22E, K2C73, K2C1, TS101, PRC2A, ABHGA, PLAK, Q6P3V8, TCPG, MEST, K2C5, DAB2P, Q6P762, LYAG, DHB12, TBB4B, RL10, DPP10, GNA13, KIF5A, ROA3, RS27, PGAP1, PCDA4, ANR46, 4F2, PLPR3, PLPR4, SSRA, QCR8, R4RL2, T132A, SE1L1, MAST1, TFB1M, RB6I2, SFXN5, CA2D3, AGAP2, NICA, SGPL1, Q8CJE3, BRNP2, ERC2, AGRG1, L2GL1, LGI1, Q8R490, TIP, FAT3, AFAP1, MARK3, CCG8, KHDR1, BRNP1, TFR1, ATRN, CLAP2, RTN4R, Q99PS2, PABP1, XYLT1, SO1C1, KDIS, TPP1, CSPG2, DCX, PSD1, ABCA2, CBPD, SFXN3, WNK1, RIMS1, RIMS2, CHD8, HNRPD, HCN4, HCN3, HCN2, HCN1, PCLO, TAOK2, SYGP1, NRP1, SRCN1, MEGF8, CELR2, S22AN, PDZD2, CXAR, TEN2, PODXL, CTNB1, SHAN1, KIF2A, SLIT2, NEGR1, GABR1, FADS2, TMM33, AGRL3, RPGF4, FLOT1, MYO9A, CADH2, HOME1, DHCR7
Download
Xu L, Liu B, Ma H, Qi E, Ma J, Chang T, Zhang J, Zhang W, Chen W, Cao X, Xiong X. O-GlcNAc transferase promotes vascular smooth muscle calcification through modulating Wnt/β-catenin signaling. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2024 38(24) 39704274
Abstract:
Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear. In the current study, we found that the levels of O-GlcNAc transferase (OGT) and global protein O-GlcNAcylation were significantly upregulated in the artery tissues of mouse calcification models and CKD patients with VC. To further delineate the in vivo role of OGT in VC, we generated Ogt smooth muscle cell-specific knockout mice and challenged them with 5/6 nephrectomy (5/6 Nx) or high-dose vitamin D3 to induce VC. Deletion of Ogt in VSMCs led to alleviated VC in response to 5/6 Nx or VD3. Moreover, elevated O-GlcNAcylation, induced by Thiamet-G, facilitated osteogenic transdifferentiation in VSMCs in response to phosphate, whereas OSMI-1, which reduces O-GlcNAcylation, exhibited an opposite phenotypic effect. Mechanistically, O-GlcNAc signaling enhanced the osteogenic conversion of VSMCs through regulation of canonical Wnt/β-catenin pathway. Indeed, β-catenin was O-GlcNAcylated by OGT and further increased its transcriptional activity in VSMCs. Furthermore, pharmacological activation of Wnt/β-catenin signaling largely reversed the diminished aortic calcification caused by Ogt ablation. Our findings demonstrate that smooth muscle O-GlcNAc signaling plays an important role in regulating hyperphosphatemia-induced VC and reveal that O-GlcNAcylation of β-catenin protein modulates its content and activity in VSMCs.
O-GlcNAc proteins:
CTNB1
Download
Page 1 of 1